Research Article
BibTex RIS Cite

Vickers Mikro Sertlik Testi Kullanılarak Yaşlı Ahşap Malzemelerin Mekanik Özelliklerinin Belirlenmesi

Year 2019, Volume: 19 Issue: 1, 106 - 115, 27.03.2019
https://doi.org/10.17475/kastorman.543542

Abstract

Çalışmanın amacı: Bu çalışmada, tarihi ahşap binalardan elde edilen yaşlı ahşabın zaman etkisi altındaki değişimlerinin belirlenmesi amaçlanmıştır.

Çalışma alanı: Deneysel analizde yaşlı ahşap (AW) ve yeni ahşap (NW) kullanılmıştır. Ahşap örneklerinin türü Pinus sylvestris L.’ tir. Yaşlı ahşap 50 yaşın üzerinde olup, Kastamonu'daki tarihi ahşap binalardan elde edilmiştir.

Materyal ve Yöntem: Yaşlı ve yeni ahşap örnekleri zamanın etkisini karşılaştırmak için hazırlanmıştır. Yeni ve yaşlı ahşapların mekanik özellikleri, kristalliği ve mikro yapısı sırasıyla Vickers mikrosertlik, XRD ve SEM cihazları kullanılarak incelenmiştir. Yaşlı ve yeni ahşap malzemenin mekanik ve yapısal özelliklerinde meydana gelen değişimler tespit edilmiştir.

Temel Sonuçlar: Numunelerin mikrosertlik değerleri uygulanan yüke bağlıdır ve yük arttıkça mikrosertlik değeri artmıştır. Meyer kanunu, orantılı numune direnci (PSR), elastik/plastik deformasyon (EPD), Hays-Kendall (HK) yaklaşımı ve çentici kaynaklı yarılma (IIC) modelleri yükten bağımsız mikrosertlik değerlerinin araştırılması için analiz edilmiştir. Sonuç olarak IIC modeli en başarılı model olarak belirlenmiştir

References

  • Alberto, C., Daniele C.., Marco, T. & Hélder S.S. (2016). A review on the mechanical properties of aged wood and salvaged timber. Construction and Building Materials, 114, 681–687.
  • Ando, K., Hirashima, Y., Sugihara, M., Hirao, S.& Sasaki, Y. (2006). Microscopic processes of shearing fracture of old wood, examined using the acoustic emission technique. Journal of Wood Science. 52, 483–489.
  • Asikuzun, E., Ozturk, O., Cetinkara, H.A., Yildirim, G., Varilci, A., Yılmazlar, M. & Terzioglu, C. (2012). Vickers hardness measurements and some physical properties of Pr2O3 doped Bi-2212 superconductors. Journal of Materials Science: Materials in Electronics. 23, 1001-1010.
  • Awad, R., Abou, Aly, A. I., Kamal, M. & Anas, M. (2011). Mechanical Properties of (Cu0.5Tl0.5)- 1223 Substituted by Journal of Superconductivity and Novel Magnetism. 24, 1947–1956.
  • Bull, S.J., Page, T.F. & Yoffe, E.H. (1989). An explanation of the indentation size effect in ceramics. Philosophical Magazine Letters. 59, 281–288. Feio, A.O. & Machado, J.S. (2015). In-situ assessment of timber structural members: combining information from visual strength grading and NDT/SDT methods–a review. Construction and Building Materials. 101, 1157–1165.
  • Fridley, K., Mitchell, J., Hunt, M. & Senft, J. (1996). Effect of 85 years of service on mechanical properties of timber roof members. 1. Experimental observations. Forest products journal. 46(5), 72–78.
  • Gong, J., Wu, J. & Guan, Z. (1999). Examination of the indentation size effect in low-load vickers hardness testing of ceramics. Journal of the European Ceramic Society, 19, 2625-2631.
  • Hays, C. & Kendall, E. G. (1973). An analysis of Knoop microhardness. Metall., 6, 275-282.
  • Inagaki, T., Yonenobu H. & Tsuchikawa S. (2008). Near-infrared spectroscopic monitoring of the water adsorption/desorption process in modern and archaeological wood. Applied Spectroscopy, 62, 860-865.
  • Kranitz, K. (2014). Effect of Natural Aging on Wood Doctoral thesys. University of West Hungary, 193.
  • Kranitz, K., Sonderegger, W., Bues, C.T. & Peter, N. (2016). Effects of aging on wood: a literature review, Wood Science and Technology. 50, 7-22.
  • Kuo, M. L. & Hu., N. (1991). Ultrastructural changes of photodegradation of wood surfaces exposed to UV. Holzforschung 45, 347-353.
  • Li, H. & Bradt, R.C. (1993). The microhardness indentation load/size effect in rutile and cassiterite single crystals. Journal of Materials Science. 28, 917-926.
  • Matsuo, M., Yokoyama, M. & Umemura, K. (2011). Aging of wood: analysis of colorchanges during natural aging and heat treatment. Holzforschung, 65, 361–368.
  • Ooka, Y., Tanahashi, H., Izuno, K., Suzuki, Y. & Toki, K. (2012). Effects of aged wooden members on seismic performance of old traditional wooden structures, in: 15th World Conf. Earthq. Eng.
  • Ozturk, O., Asikuzun, E., Erdem, M., Yildirim, G., Yildiz & O., Terzioglu, C. (2012). Journal of Materials Science: Materials in Electronics. 23, 511.
  • Popescu, C. M., G. Dobele, G. Rossinskaja, T. Dizhbite & C. Vasile. (2007). Degradation of lime wood painting supports evaluation of changes in the structure of aged lime wood by different physico-chemical methods. Journal of Analytical and Applied Pyrolysis, 79, 71-77.
  • Putilin, S. N., Antipov, E. V., Chmaissen, O. & Marezio, M. (1993). Superconductivity at 94 𝐾 in 𝐻𝑔𝐵𝑎2𝐶𝑢𝑂4+𝑑. Nature, 362, 226.
  • Quinn, J.B. & Quinn, V.D. (1997). Indentation brittleness of ceramics: a fresh approach. Journal of Materials Science, 32, 4331-4346.
  • Safran, S., Asikuzun, E., Kilicarslan, E.S., Kilic, A., Ozturk, O. & Gencer, A. (2014). Influence of Different Boron Precursors on Superconducting and Mechanical Properties of MgB2. Journal of Materials Science: Materials in Electronics, 25, 2737-2747.
  • Sondereggera, W., Kránitz, K., Bues C.T. & N. Peter. (2015). Aging effects on physical and mechanical properties of spruce, fir and oak wood. Journal of Cultural Heritage ,16, 883-889.
  • Tosun, M., Ataoglu, S., Arda, L., Ozturk, O., Asikuzun, E., Akcan, D. & Cakiroglu, O. (2014). Structural and mechanical properties of ZnMgO nanoparticles. Materials Science and Engineering: A. 590, 416-422.
  • Unger, A., Schniewind, A.P. & Unger, W. (2001). Conservation of wood artifacts, SpringerVerlag, Berlin Heidelberg.

Determination of Mechanical Properties of Aged Wood Material Using Vickers Microhardness Test

Year 2019, Volume: 19 Issue: 1, 106 - 115, 27.03.2019
https://doi.org/10.17475/kastorman.543542

Abstract

Aim of study: In this study, it was aimed to determine the changes under the influence of time of the age wood obtained from the historical wooden buildings.
Area of study: The aged wood (AW) and new wood (NW) were used in experimental analysis. Wood samples were Pinus sylvestris L. The aged wood was over 50 years old and is derived from the historical wooden buildings in Kastamonu, Turkey.
Material and Methods: The aged and new wood samples were prepared to compare the effect of time. The mechanical properties, crystallinity and microstructure of new and aged wood were investigated by using Vickers microhardness tester, XRD and SEM, respectively. The change in the mechanical and structural properties of the aged and new wood material was determined.
Main results: The microhardness values depended on the applied load and increased with increasing the applied load. Meyer's law, Proportional Sample Resistance, Elastic/Plastic Deformation, Hays-Kendall Approach and Indentation-Induced Cracking models were analyzed for investigation of load independent microhardness values. As a result, IIC model was the most successful model.
Research highlights: It is very important to know the changes that wood has suffered in time in order to conservation of wooden cultural heritage objects and reuse of aged wood.
Keywords: Aged wood, new wood, historical construction, cultural heritage,

References

  • Alberto, C., Daniele C.., Marco, T. & Hélder S.S. (2016). A review on the mechanical properties of aged wood and salvaged timber. Construction and Building Materials, 114, 681–687.
  • Ando, K., Hirashima, Y., Sugihara, M., Hirao, S.& Sasaki, Y. (2006). Microscopic processes of shearing fracture of old wood, examined using the acoustic emission technique. Journal of Wood Science. 52, 483–489.
  • Asikuzun, E., Ozturk, O., Cetinkara, H.A., Yildirim, G., Varilci, A., Yılmazlar, M. & Terzioglu, C. (2012). Vickers hardness measurements and some physical properties of Pr2O3 doped Bi-2212 superconductors. Journal of Materials Science: Materials in Electronics. 23, 1001-1010.
  • Awad, R., Abou, Aly, A. I., Kamal, M. & Anas, M. (2011). Mechanical Properties of (Cu0.5Tl0.5)- 1223 Substituted by Journal of Superconductivity and Novel Magnetism. 24, 1947–1956.
  • Bull, S.J., Page, T.F. & Yoffe, E.H. (1989). An explanation of the indentation size effect in ceramics. Philosophical Magazine Letters. 59, 281–288. Feio, A.O. & Machado, J.S. (2015). In-situ assessment of timber structural members: combining information from visual strength grading and NDT/SDT methods–a review. Construction and Building Materials. 101, 1157–1165.
  • Fridley, K., Mitchell, J., Hunt, M. & Senft, J. (1996). Effect of 85 years of service on mechanical properties of timber roof members. 1. Experimental observations. Forest products journal. 46(5), 72–78.
  • Gong, J., Wu, J. & Guan, Z. (1999). Examination of the indentation size effect in low-load vickers hardness testing of ceramics. Journal of the European Ceramic Society, 19, 2625-2631.
  • Hays, C. & Kendall, E. G. (1973). An analysis of Knoop microhardness. Metall., 6, 275-282.
  • Inagaki, T., Yonenobu H. & Tsuchikawa S. (2008). Near-infrared spectroscopic monitoring of the water adsorption/desorption process in modern and archaeological wood. Applied Spectroscopy, 62, 860-865.
  • Kranitz, K. (2014). Effect of Natural Aging on Wood Doctoral thesys. University of West Hungary, 193.
  • Kranitz, K., Sonderegger, W., Bues, C.T. & Peter, N. (2016). Effects of aging on wood: a literature review, Wood Science and Technology. 50, 7-22.
  • Kuo, M. L. & Hu., N. (1991). Ultrastructural changes of photodegradation of wood surfaces exposed to UV. Holzforschung 45, 347-353.
  • Li, H. & Bradt, R.C. (1993). The microhardness indentation load/size effect in rutile and cassiterite single crystals. Journal of Materials Science. 28, 917-926.
  • Matsuo, M., Yokoyama, M. & Umemura, K. (2011). Aging of wood: analysis of colorchanges during natural aging and heat treatment. Holzforschung, 65, 361–368.
  • Ooka, Y., Tanahashi, H., Izuno, K., Suzuki, Y. & Toki, K. (2012). Effects of aged wooden members on seismic performance of old traditional wooden structures, in: 15th World Conf. Earthq. Eng.
  • Ozturk, O., Asikuzun, E., Erdem, M., Yildirim, G., Yildiz & O., Terzioglu, C. (2012). Journal of Materials Science: Materials in Electronics. 23, 511.
  • Popescu, C. M., G. Dobele, G. Rossinskaja, T. Dizhbite & C. Vasile. (2007). Degradation of lime wood painting supports evaluation of changes in the structure of aged lime wood by different physico-chemical methods. Journal of Analytical and Applied Pyrolysis, 79, 71-77.
  • Putilin, S. N., Antipov, E. V., Chmaissen, O. & Marezio, M. (1993). Superconductivity at 94 𝐾 in 𝐻𝑔𝐵𝑎2𝐶𝑢𝑂4+𝑑. Nature, 362, 226.
  • Quinn, J.B. & Quinn, V.D. (1997). Indentation brittleness of ceramics: a fresh approach. Journal of Materials Science, 32, 4331-4346.
  • Safran, S., Asikuzun, E., Kilicarslan, E.S., Kilic, A., Ozturk, O. & Gencer, A. (2014). Influence of Different Boron Precursors on Superconducting and Mechanical Properties of MgB2. Journal of Materials Science: Materials in Electronics, 25, 2737-2747.
  • Sondereggera, W., Kránitz, K., Bues C.T. & N. Peter. (2015). Aging effects on physical and mechanical properties of spruce, fir and oak wood. Journal of Cultural Heritage ,16, 883-889.
  • Tosun, M., Ataoglu, S., Arda, L., Ozturk, O., Asikuzun, E., Akcan, D. & Cakiroglu, O. (2014). Structural and mechanical properties of ZnMgO nanoparticles. Materials Science and Engineering: A. 590, 416-422.
  • Unger, A., Schniewind, A.P. & Unger, W. (2001). Conservation of wood artifacts, SpringerVerlag, Berlin Heidelberg.
There are 23 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Elif Aşıkuzun

Ümmü Karagöz İşleyen This is me

Publication Date March 27, 2019
Published in Issue Year 2019 Volume: 19 Issue: 1

Cite

APA Aşıkuzun, E., & Karagöz İşleyen, Ü. (2019). Determination of Mechanical Properties of Aged Wood Material Using Vickers Microhardness Test. Kastamonu University Journal of Forestry Faculty, 19(1), 106-115. https://doi.org/10.17475/kastorman.543542
AMA Aşıkuzun E, Karagöz İşleyen Ü. Determination of Mechanical Properties of Aged Wood Material Using Vickers Microhardness Test. Kastamonu University Journal of Forestry Faculty. March 2019;19(1):106-115. doi:10.17475/kastorman.543542
Chicago Aşıkuzun, Elif, and Ümmü Karagöz İşleyen. “Determination of Mechanical Properties of Aged Wood Material Using Vickers Microhardness Test”. Kastamonu University Journal of Forestry Faculty 19, no. 1 (March 2019): 106-15. https://doi.org/10.17475/kastorman.543542.
EndNote Aşıkuzun E, Karagöz İşleyen Ü (March 1, 2019) Determination of Mechanical Properties of Aged Wood Material Using Vickers Microhardness Test. Kastamonu University Journal of Forestry Faculty 19 1 106–115.
IEEE E. Aşıkuzun and Ü. Karagöz İşleyen, “Determination of Mechanical Properties of Aged Wood Material Using Vickers Microhardness Test”, Kastamonu University Journal of Forestry Faculty, vol. 19, no. 1, pp. 106–115, 2019, doi: 10.17475/kastorman.543542.
ISNAD Aşıkuzun, Elif - Karagöz İşleyen, Ümmü. “Determination of Mechanical Properties of Aged Wood Material Using Vickers Microhardness Test”. Kastamonu University Journal of Forestry Faculty 19/1 (March 2019), 106-115. https://doi.org/10.17475/kastorman.543542.
JAMA Aşıkuzun E, Karagöz İşleyen Ü. Determination of Mechanical Properties of Aged Wood Material Using Vickers Microhardness Test. Kastamonu University Journal of Forestry Faculty. 2019;19:106–115.
MLA Aşıkuzun, Elif and Ümmü Karagöz İşleyen. “Determination of Mechanical Properties of Aged Wood Material Using Vickers Microhardness Test”. Kastamonu University Journal of Forestry Faculty, vol. 19, no. 1, 2019, pp. 106-15, doi:10.17475/kastorman.543542.
Vancouver Aşıkuzun E, Karagöz İşleyen Ü. Determination of Mechanical Properties of Aged Wood Material Using Vickers Microhardness Test. Kastamonu University Journal of Forestry Faculty. 2019;19(1):106-15.

14178  14179       14165           14166           14167            14168