Research Article
BibTex RIS Cite

Assessment of Vulnerability, Resilience Capacity and Land Use Within the Scope of Climate Change Adaptation: The Case of Balıkesir-Susurluk Basin

Year 2022, Volume: 22 Issue: 2, 112 - 124, 27.09.2022
https://doi.org/10.17475/kastorman.1179037

Abstract

Aim of study: Countries will be affected by climate change in different levels and ways. Therefore, it is necessary to focus on methods and options specific to regions. Basin approach, the sustainability of the basins and their capacity to be exposed to the possible effects of climate change, adapting to and resisting climate change should be addressed with an integrated approach. “Basin vulnerability analysis” methods are developed to ensure ecosystems sustainability and reveal their adaptive capacities. The purpose of these analyses is to calculate the basin’s vulnerability to all anthropogenic stress factors, especially climate change, for prioritizing investments and measures.
Area of study: This study applied in Balıkesir-Susurluk sub-basins.
Material and methods: This study applied a vulnerability analyses and mapped in Balıkesir-Susurluk sub-basins. The vulnerability analysis results were evaluated together with land use and resilience capacity.
Main results: We obtained a high correlation (r2=0.788) between the vulnerability values and the water quality scores. The used method was verified and found to be successful and applicable.
Highlights: The dissemination of the method with its application to other basins is critical in analyzing the vulnerability at the basin scale and directing the basin restoration investments.

Supporting Institution

TUBITAK

Project Number

116Y446

References

  • Ahn, S.R. & Kim, S.J. (2017). Assessment of watershed health, vulnerability and resilience for de¬termining protection and restoration priorities. Envi¬ronmental Modelling & Software, 122,1-19.
  • Aytekin, M. (2021). Development of a watershed vulnerability assessment method to support climate change adaptation action. PhD Thesis, Istanbul Uni¬versity-Cerrahpasa Institute of Graduate Studies, Is¬tanbul.
  • CCME, Canadian Council of Ministers of the En¬vironment. (2015). Implementation framework for cli¬mate change adaptation planning at a watershed scale. PN 1529, ISBN: 978-1-77202-011-3.
  • CORINE (2018). Copernicus Pan-European Land Monitoring Service. https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (Data accessed: 26.01.2018).
  • DSI (2018). General Directorate of State Hydrau¬lic Works. https://www.dsi.gov.tr (Data accessed: 16.05.2018).
  • EEA (2008). European Environment Agency, Impacts of Europe's changing climate – 2008 indicator-based assessment. EEA Official Publications of the European Communities, 2008, ISBN: 978-92-9167-372-8.
  • EPA (2018). U.S. Environmental Protection Agency (epa.gov). Technical Assistance Document for the Reporting of Daily Air Quality – the Air Quality Index (AQI), Office of Air Quality Planning and Standards Air Quality Assessment Division Research Triangle Park, NC.
  • EU-DEM (2018). Copernicus Land Monitoring Service. EU-DEM v.1.1. https://land.coperni¬cus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1. (Data accessed: 15.02.2018).
  • Furniss, Michael J.; Staab, Brian P.; Hazelhurst, Sherry; Clifton, Cathrine F.; Roby, Kenneth B.; Ilhadrt, Bonnie L.; Larry, Elizabeth B.; Todd, Albert H.; Reid, Leslie M.; Hines, Sarah J.; Bennett, Karen A.; Luce, Charles H.; Edwards & Pamela J. (2010). US Forest Service, Pacific Northwest Research Station (fs.usda.gov/pnw). Water, climate change, and forests: watershed stewardship for a changing climate. Gen. Tech. Rep. PNW-GTR-812. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.
  • Hijmans, R.J., Cruz, M., Rojasand, E. & Guarino, L. (2001). DIVA-GIS Version 1.4. A geographic information system for the management and analysis of genetic resources data. Manval International Potato Center, Lima, Peru.
  • Horton, R.E. (1945). Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America, 56, 275-370.
  • IPCC (2021). Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leit¬zell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (Ed.)]. Cambridge University Press. In Press.
  • McCarthy, J.J., Canziani, O.F., Leary, N.A., Dokken, D.J. & White, K.S. (Ed.). (2001). Climate Change 2001: Impacts, Adaptation, and Vulnerability, Cambridge University Press, Cambridge.
  • MGM (2016). General Directorate of Meteorology. Climate of Turkey according to Thornthwaite Climate Classification. Ankara.
  • MGM (2018). General Directorate of Meteoro-logy.https://mevbis.mgm.gov.tr/mevbis/ui/index.html#/Workspace (Data accessed: 01.13.2018).
  • Miller, V.C. (1953). A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee, Columbia University, Department of Geology, ONR, Geography Branch, New York.
  • Özhan, S. (2004). Watershed management, Cantay Book-Stationery-Photocopy ind.trade.co.ltd., Istanbul, ISBN: 975-4040-739-1.
  • Potyondy, J.P. & Geier, T.W. (2011). Watershed condition classification technical guide, USDA Forest Service.
  • Randhir, T., Ekness, P. & Tsvetkova, O. (2014). Climatic Change Impacts on Watershed Hydrologic Dynamics: A Systems Approach to Adaptation. Watershed Management, Restoration and Environ-mental Impact. ISBN: 978-161668667-3.
  • Richardson, C.P. & Amankwatia, K. (2019). Assessing watershed vulnerability in Bernalillo County, New Mexico using GIS-Based Fuzzy Inference. Journal of Water Resource and Protection, 11, 2, 99-121.
  • Roy, U. & Majumder, M. (2016). IPCC Watersheds to Climate Change Assessed by Neural Network and Analytical Hierarchy Process. Springer Briefs in Water Science and Technology. Springer, ISBN 978-981-287-343-9.
  • Serengil, Y. (2018). Climate change and carbon management. Agriculture, Forestry and Other Land Uses, UNDP, Ankara, ISBN: 978-605-9239-11-0.
  • Strahler, A. (1964). Quantitative Geomorphology of Drainage Basins and Channel Networks. In: Chow, V., Ed., Handbook of Applied Hydrology, McGraw Hill, New York, 439-476.
  • Tiburan, C,J.R., Saizen, I., Kobayashi, S. & Mizuno, K. (2009). Developing a spatial-based approach for vulnerability assessment of Philippine watersheds and its potental in disaster management, Disaster Management and Human Health Risk, WIT Transactions on The Built Environment, 110,21-32.
  • Tiburan, C.J.R., Saizen, I. & Kobayashi, S. (2013). Geospatial-based vulnerability assessment of an urban watershed. The 3rd International Conference on Sustainable Future for Human Security SUSTAIN 2012.
  • Thornthwaite, C.W. (1948). An Approach toward a rational classification of climate, Geographical Review, 38,1, 55-94.
  • Tran, L.T., O'Neill, R.V.O. & Smith, E.R. (2012). A watershed-based method for environmental vulnerability assessment with a case study of the Mid-Atlantic region. Environmental Impact Assessment Review, 34, 56-64.
  • Tsakiris, G., Pangalou, D. & Vangelis, H. (2007). Regional drought assessment based on the reconnaissance drought index (RDI), Water Resources Management, 21, 821-833.
  • TUIK (2020). Turkish Statistical Institute. https://data.tuik.gov.tr/ (Data accessed: 10.04.2020).
  • USDA (2013). US Department of Agriculture (usda.gov). Assessing the Vulnerability of Watersheds to Climate Change, Results of National Forest Watershed Vulnerability Pilot Assessments. General Technical Report.
  • Watson, R. T. (2001). Climate change 2001: Synthesis Report. IPCC Third Assessment Report.
  • WBG (2016). World Bank (worldbank.org). World Bank Group Climate Change Action Plan 2016-2020.World Bank, Washington, DC. World Bank. https://openknowledge.worldbank.org/handle/10986/24451 License: CC BY 3.0 IGO.
  • WBG (2021). World Bank (worldbank.org). World Bank Group Climate Change Action Plan 2021–2025: Supporting Green, Resilient, and Inclu¬sive Development.World Bank, Washington, DC.
  • WorldBank.https://openknowledge.worldbank.org/handle/10986/35799 Li¬cense: CC BY 3.0 IGO.
  • Williams, J. E., Wood, C.A. & Dombeck, M.P. (Ed.). (1997). Watershed restoration: principles and practices. Bethesda, M.D.: American Fisheries Soci¬ety, ISBN-10 ‏ : ‎ 1888569042.

İklim Değişikliğine Uyum Kapsamında Kırılganlık, Direnç Kapasitesi ve Arazi Kullanımı Değerlendirilmesi: Balıkesir-Susurluk Havzası Örneği

Year 2022, Volume: 22 Issue: 2, 112 - 124, 27.09.2022
https://doi.org/10.17475/kastorman.1179037

Abstract

Çalışmanın amacı: İklim değişikliğinden ülkeler farklı düzeyde ve şekilde etkilenecektir. Bu durumda hem ülkelere hem de farklı bölgelere özgü uyum yöntem ve seçenekleri üzerinde durulması gerekmektedir. Havza yaklaşımı kapsamında havzaların sürdürülebilirliği ve iklim değişikliğinin olası etkilerine maruz kalma, iklim değişikliğine uyum sağlama ve direnç gösterme kapasiteleri de entegre bir yaklaşımla ele alınmalıdır. Ekosistemlerin sürdürülebilirliğinin sağlanabilmesi ve adaptif kapasitelerinin ortaya konulabilmesi için “havza kırılganlık analizi” yöntemleri geliştirilmektedir. Bu analizlerde amaç yatırımların ve önlemlerin önceliklendirilmesi ve doğru yönlendirilmesi bakımından havzanın iklim değişikliği başta olmak üzere tüm antropojenik stres faktörlerine karşı kırılganlığının hesaplanmasıdır.
Çalışma alanı: Bu çalışma Balıkesir-Susurluk alt havzalarında gerçekleştirilmiştir.
Materyal ve yöntem: Balıkesir-Susurluk alt havzalarında kırılganlık analizi uygulanmış ve haritalanmıştır. Kırılganlık analizi sonuçları, arazi kullanımı ve direnç kapasitesi ile birlikte değerlendirilmiştir.
Temel sonuçlar: Kırılganlık değerleri ile arazi ölçümlerinde elde edilen su kalitesi skorları arasında elde edilen yüksek korelasyon (r2=0.788) sayesinde uygulanan yöntemin doğrulaması yapılmış ve yöntem başarılı ve uygulanabilir bulunmuştur.
Araştırma vurguları: Yöntemin başka havzalara uygulaması ile yaygınlaştırılması, havza ölçeğinde kırılganlığın analizi ve havza restorasyon yatırımlarının yönlendirilmesi bakımından son derece önemlidir.

Project Number

116Y446

References

  • Ahn, S.R. & Kim, S.J. (2017). Assessment of watershed health, vulnerability and resilience for de¬termining protection and restoration priorities. Envi¬ronmental Modelling & Software, 122,1-19.
  • Aytekin, M. (2021). Development of a watershed vulnerability assessment method to support climate change adaptation action. PhD Thesis, Istanbul Uni¬versity-Cerrahpasa Institute of Graduate Studies, Is¬tanbul.
  • CCME, Canadian Council of Ministers of the En¬vironment. (2015). Implementation framework for cli¬mate change adaptation planning at a watershed scale. PN 1529, ISBN: 978-1-77202-011-3.
  • CORINE (2018). Copernicus Pan-European Land Monitoring Service. https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (Data accessed: 26.01.2018).
  • DSI (2018). General Directorate of State Hydrau¬lic Works. https://www.dsi.gov.tr (Data accessed: 16.05.2018).
  • EEA (2008). European Environment Agency, Impacts of Europe's changing climate – 2008 indicator-based assessment. EEA Official Publications of the European Communities, 2008, ISBN: 978-92-9167-372-8.
  • EPA (2018). U.S. Environmental Protection Agency (epa.gov). Technical Assistance Document for the Reporting of Daily Air Quality – the Air Quality Index (AQI), Office of Air Quality Planning and Standards Air Quality Assessment Division Research Triangle Park, NC.
  • EU-DEM (2018). Copernicus Land Monitoring Service. EU-DEM v.1.1. https://land.coperni¬cus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1. (Data accessed: 15.02.2018).
  • Furniss, Michael J.; Staab, Brian P.; Hazelhurst, Sherry; Clifton, Cathrine F.; Roby, Kenneth B.; Ilhadrt, Bonnie L.; Larry, Elizabeth B.; Todd, Albert H.; Reid, Leslie M.; Hines, Sarah J.; Bennett, Karen A.; Luce, Charles H.; Edwards & Pamela J. (2010). US Forest Service, Pacific Northwest Research Station (fs.usda.gov/pnw). Water, climate change, and forests: watershed stewardship for a changing climate. Gen. Tech. Rep. PNW-GTR-812. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.
  • Hijmans, R.J., Cruz, M., Rojasand, E. & Guarino, L. (2001). DIVA-GIS Version 1.4. A geographic information system for the management and analysis of genetic resources data. Manval International Potato Center, Lima, Peru.
  • Horton, R.E. (1945). Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America, 56, 275-370.
  • IPCC (2021). Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leit¬zell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (Ed.)]. Cambridge University Press. In Press.
  • McCarthy, J.J., Canziani, O.F., Leary, N.A., Dokken, D.J. & White, K.S. (Ed.). (2001). Climate Change 2001: Impacts, Adaptation, and Vulnerability, Cambridge University Press, Cambridge.
  • MGM (2016). General Directorate of Meteorology. Climate of Turkey according to Thornthwaite Climate Classification. Ankara.
  • MGM (2018). General Directorate of Meteoro-logy.https://mevbis.mgm.gov.tr/mevbis/ui/index.html#/Workspace (Data accessed: 01.13.2018).
  • Miller, V.C. (1953). A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee, Columbia University, Department of Geology, ONR, Geography Branch, New York.
  • Özhan, S. (2004). Watershed management, Cantay Book-Stationery-Photocopy ind.trade.co.ltd., Istanbul, ISBN: 975-4040-739-1.
  • Potyondy, J.P. & Geier, T.W. (2011). Watershed condition classification technical guide, USDA Forest Service.
  • Randhir, T., Ekness, P. & Tsvetkova, O. (2014). Climatic Change Impacts on Watershed Hydrologic Dynamics: A Systems Approach to Adaptation. Watershed Management, Restoration and Environ-mental Impact. ISBN: 978-161668667-3.
  • Richardson, C.P. & Amankwatia, K. (2019). Assessing watershed vulnerability in Bernalillo County, New Mexico using GIS-Based Fuzzy Inference. Journal of Water Resource and Protection, 11, 2, 99-121.
  • Roy, U. & Majumder, M. (2016). IPCC Watersheds to Climate Change Assessed by Neural Network and Analytical Hierarchy Process. Springer Briefs in Water Science and Technology. Springer, ISBN 978-981-287-343-9.
  • Serengil, Y. (2018). Climate change and carbon management. Agriculture, Forestry and Other Land Uses, UNDP, Ankara, ISBN: 978-605-9239-11-0.
  • Strahler, A. (1964). Quantitative Geomorphology of Drainage Basins and Channel Networks. In: Chow, V., Ed., Handbook of Applied Hydrology, McGraw Hill, New York, 439-476.
  • Tiburan, C,J.R., Saizen, I., Kobayashi, S. & Mizuno, K. (2009). Developing a spatial-based approach for vulnerability assessment of Philippine watersheds and its potental in disaster management, Disaster Management and Human Health Risk, WIT Transactions on The Built Environment, 110,21-32.
  • Tiburan, C.J.R., Saizen, I. & Kobayashi, S. (2013). Geospatial-based vulnerability assessment of an urban watershed. The 3rd International Conference on Sustainable Future for Human Security SUSTAIN 2012.
  • Thornthwaite, C.W. (1948). An Approach toward a rational classification of climate, Geographical Review, 38,1, 55-94.
  • Tran, L.T., O'Neill, R.V.O. & Smith, E.R. (2012). A watershed-based method for environmental vulnerability assessment with a case study of the Mid-Atlantic region. Environmental Impact Assessment Review, 34, 56-64.
  • Tsakiris, G., Pangalou, D. & Vangelis, H. (2007). Regional drought assessment based on the reconnaissance drought index (RDI), Water Resources Management, 21, 821-833.
  • TUIK (2020). Turkish Statistical Institute. https://data.tuik.gov.tr/ (Data accessed: 10.04.2020).
  • USDA (2013). US Department of Agriculture (usda.gov). Assessing the Vulnerability of Watersheds to Climate Change, Results of National Forest Watershed Vulnerability Pilot Assessments. General Technical Report.
  • Watson, R. T. (2001). Climate change 2001: Synthesis Report. IPCC Third Assessment Report.
  • WBG (2016). World Bank (worldbank.org). World Bank Group Climate Change Action Plan 2016-2020.World Bank, Washington, DC. World Bank. https://openknowledge.worldbank.org/handle/10986/24451 License: CC BY 3.0 IGO.
  • WBG (2021). World Bank (worldbank.org). World Bank Group Climate Change Action Plan 2021–2025: Supporting Green, Resilient, and Inclu¬sive Development.World Bank, Washington, DC.
  • WorldBank.https://openknowledge.worldbank.org/handle/10986/35799 Li¬cense: CC BY 3.0 IGO.
  • Williams, J. E., Wood, C.A. & Dombeck, M.P. (Ed.). (1997). Watershed restoration: principles and practices. Bethesda, M.D.: American Fisheries Soci¬ety, ISBN-10 ‏ : ‎ 1888569042.
There are 35 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Mustafa Aytekin This is me

Yusuf Serengil This is me

Project Number 116Y446
Early Pub Date September 24, 2022
Publication Date September 27, 2022
Published in Issue Year 2022 Volume: 22 Issue: 2

Cite

APA Aytekin, M., & Serengil, Y. (2022). Assessment of Vulnerability, Resilience Capacity and Land Use Within the Scope of Climate Change Adaptation: The Case of Balıkesir-Susurluk Basin. Kastamonu University Journal of Forestry Faculty, 22(2), 112-124. https://doi.org/10.17475/kastorman.1179037
AMA Aytekin M, Serengil Y. Assessment of Vulnerability, Resilience Capacity and Land Use Within the Scope of Climate Change Adaptation: The Case of Balıkesir-Susurluk Basin. Kastamonu University Journal of Forestry Faculty. September 2022;22(2):112-124. doi:10.17475/kastorman.1179037
Chicago Aytekin, Mustafa, and Yusuf Serengil. “Assessment of Vulnerability, Resilience Capacity and Land Use Within the Scope of Climate Change Adaptation: The Case of Balıkesir-Susurluk Basin”. Kastamonu University Journal of Forestry Faculty 22, no. 2 (September 2022): 112-24. https://doi.org/10.17475/kastorman.1179037.
EndNote Aytekin M, Serengil Y (September 1, 2022) Assessment of Vulnerability, Resilience Capacity and Land Use Within the Scope of Climate Change Adaptation: The Case of Balıkesir-Susurluk Basin. Kastamonu University Journal of Forestry Faculty 22 2 112–124.
IEEE M. Aytekin and Y. Serengil, “Assessment of Vulnerability, Resilience Capacity and Land Use Within the Scope of Climate Change Adaptation: The Case of Balıkesir-Susurluk Basin”, Kastamonu University Journal of Forestry Faculty, vol. 22, no. 2, pp. 112–124, 2022, doi: 10.17475/kastorman.1179037.
ISNAD Aytekin, Mustafa - Serengil, Yusuf. “Assessment of Vulnerability, Resilience Capacity and Land Use Within the Scope of Climate Change Adaptation: The Case of Balıkesir-Susurluk Basin”. Kastamonu University Journal of Forestry Faculty 22/2 (September 2022), 112-124. https://doi.org/10.17475/kastorman.1179037.
JAMA Aytekin M, Serengil Y. Assessment of Vulnerability, Resilience Capacity and Land Use Within the Scope of Climate Change Adaptation: The Case of Balıkesir-Susurluk Basin. Kastamonu University Journal of Forestry Faculty. 2022;22:112–124.
MLA Aytekin, Mustafa and Yusuf Serengil. “Assessment of Vulnerability, Resilience Capacity and Land Use Within the Scope of Climate Change Adaptation: The Case of Balıkesir-Susurluk Basin”. Kastamonu University Journal of Forestry Faculty, vol. 22, no. 2, 2022, pp. 112-24, doi:10.17475/kastorman.1179037.
Vancouver Aytekin M, Serengil Y. Assessment of Vulnerability, Resilience Capacity and Land Use Within the Scope of Climate Change Adaptation: The Case of Balıkesir-Susurluk Basin. Kastamonu University Journal of Forestry Faculty. 2022;22(2):112-24.

14178  14179       14165           14166           14167            14168