Research Article
BibTex RIS Cite

Determination of Trace Elements of Some Cladonia Species from Turkey by ICP-MS

Year 2022, Volume: 22 Issue: 2, 135 - 146, 27.09.2022
https://doi.org/10.17475/kastorman.1179052

Abstract

Aim of study: Lichens are biological indicators of environmental pollution of both natural and artificial origin in terms of various elements. In 9 samples (Cladonia coniocraea, C. fimbriata, C. firma, C. foliacea, C. furcate, C. pocillum, C. pyxidata, C. rangiformis and C. subulata) belonging to the genus Cladonia collected from different regions of Turkey; Aluminum, Chromium, Manganese, Iron, Cobalt, Nickel, Copper, Zinc, Arsenic, Selenium, Strontium, Cadmium, Tin, Mercury and Lead element amounts were investigated.
Area of study: Lichen samples belonging to the same genus were collected in field studies conducted in 7 different cities in Turkey.
Material and methods: All samples were analyzed independently after solubilization in acid medium in microwave system and in triplicate. The accuracy of the results has been confirmed by analysis of 1547 Peach Leaf certified reference material.
Main results: Sources of metals, metal accumulation mechanisms and how much they are absorbed by lichens were determined. The highest Al, Cr, Ni concentrations in Cladonia firma are 429.3, 3.04, 13.53 µg/g, respectively. The highest Co, Sr, Cu, Se, Hg concentrations in Cladonia subulata are 0.81, 33.59, 13.16, 0.158, 0.060 µg/g, respectively. The highest Pb, Cd, Sn concentrations in Cladonia pyxidata are 5.90, 0.30, 6.50 µg/g, respectively. The highest Fe, Mn, Zn, As concentrations were 228.7, 17.8, 26.44 and 1.335 µg/g, respect.
Highlights: The results showed that metal accumulation in lichens was directly related to the environment in which lichens were collected.

References

  • Adamo, P., Giordano, S., Vingiani, S., Cobianchi, R. C. & Violante, P. (2003). Trace element accumulation by moss and lichen exposed in bags in the city of Naples (Italy). Environmental Pollution, 122, 91-103. https://doi.org/10.1016/S0269-7491(02)00277-4.
  • Ahmadjian, V.H. (1995). Lichens are more important than you think. Bioscience, 45, 123-124.
  • Ahti, T. & Hammer, S. (2002). Cladonia, in: T.H. Nash, B.D.Ryan, C. Gries, F. Bungartz (Eds), Lichen Flora of the Greater Sonoran Desert Region, Arizona State University, Tempe, 31-158.
  • Ahti, T., Stenroos, S. & Moberg, R. (2013). Nordic Lichen Flora, 5. Cladoniaceae, Museum of Evolution, Uppsala University.
  • Backor, M. & Loppi, S. (2009). Interactions of Lichens with Heavy Metals. Biologia Plantarum, 53, 214-222. https://doi.org/10.1007/s10535-009-0042-y.
  • Baffi, C., Bettinelli, M., Beone, G.M., & Spezia, S. (2002). Comparison of Different Analytical Procedures İn The Determination Of Trace Elements in Lichens. Chemosphere, 48, 299-306. https://doi.org/10.1016/S0045-6535(02)00094-2.
  • Bargagli, R. (1998). Trace Elements in Terrestrial Plants: An Ecophysiological Approach to Biomonitoring and Biorecovery, Springer, Berlin.
  • Berghof, application report (2008). Speedwave four microwave pressure digestion, food, pharma, cosmetics, Germany, p. 47.
  • Brodo, I. M., Sharnoff, S. D. & Sharnoff, S. (2001). Lichens of North American. Yale University Press, New Haven and London, 2001.
  • Callahan, D. L., Baker, A. J. M., Kolev, S. D. & Wedd, G. (2006). Metal ion ligands in hyperaccumulating plants. Journal of Biological Inorganic Chemistry, 11, 2-12. https://doi.org/10.1007/s00775-005-0056-7.
  • Cayir, A., Coskun, M. & Coskun, M. (2007). Determination of atmospheric heavy metal pollution in Canakkale and Balikesir Provinces using lichen (Cladonia rangiformis) as a bioindicator. Bulletin of Environmental Contamination and Toxicology, 79(4), 367-370. https://doi.org/10.1007/s00128-007-9232-5.
  • Chiarenzelli, K., Aspler, L., Dunn, C., Cousens, B., Ozarko, D. & Powis, K. (2001). Multi-element and rare earth element composition of lichens, mosses, and vascular plants from the Central Barrenlands, Nunavut, Canada. Applied Geochemistry, 16, 245-270. https://doi.org/10.1016/S0883-2927(00)00027-5.
  • Conti, M. E. & Cecchetti, G. (2001). Biological monitoring: lichens as bioindicators of air pollution assessment – a review. Environ. Pollut., 114(3), 471-492. https://doi.org/10.1016/S0269-7491(00)00224-4.
  • Demirbas, A. (2004). Trace element concentrations in ashes from various types of lichen biomass species. Energy sources, 26(5), 499-506. https://doi.org/10.1080/00908310490429687.
  • Driscoll, C. T. & Schecher, W. D. (1990). The chemistry of aluminum in the environment. Environmental Geochemistry and Health, 12(1), 28-49.
  • Egyed, M. & Wood, G.C. (1996). Risk assessment for combustion products of the gasoline additive MMT in Canada. The Science of the Total Environment, 189, 11-20. https://doi.org/10.1016/0048-9697(96)05185-6.
  • Elix, J.A. (1996). Biochemistry and secondary metabolites. in: T.H. Nash, (ed.), Lichen Biology Cambridge University Press, Cambridge, 154-180.
  • FAO/WHO (2003). Codex Alimentarius International Food Standards Codex Stan -179. Codex Alimentarius commission.
  • Forstner, U. & Wittmann, G. T. W. (1979) Metal Pollution in the Aquatic Environment, Springer-Verlag: Berlin.
  • Gadd, G. M. (1993). Interactions of fungi with toxic metals. New Phytologist 124, 25-60. https://doi.org/10.1111/j.1469-8137.1993.tb03796.x.
  • Garty, J. (2001). Biomonitoring Atmospheric Heavy Metals with Lichens: Theory and Application. Critical Reviews in Plant Sciences 20. 309-371. https://doi.org/10.1080/20013591099254.
  • Garty, J. & Ammann, K. (1987). The amounts of Ni, Cr, Zn, Pb, Cu, Fe and Mn in some lichens growing in Switzerland. Environmental and Experimental Botany 27, 127-138. https://doi.org/10.1016/0098-8472(87)90063-3.
  • Gilbert, O. L. (1980). Effect of land-use on terricolous lichens. The Lichenologist, 12, 117-124. https://doi.org/10.1017/S0024282980000047.
  • Gilbert, O. L. (1990). The lichen flora of urban wasteland. Lichenologist, 22, 87–101. https://doi.org/10.1017/S0024282990000056.
  • Hawkworth, D. L. (1988). The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Botanical journal of the Linnean Society, 96, 3-20. https://doi.org/10.1111/j.1095-8339.1988.tb00623.x.
  • Herrero Fernandez, Z., Estevez Alvarez, J.R., Montero Alvarez, A., Pupo Gonzalez, I., dos Santos Júnior, J. A., Ortueta Milan, M., & Padilla Alvarez, R. (2016). Multielement analysis of lichen samples using XRF methods. Comparison with ICP‐AES and FAAS. X‐Ray Spectrometry, 45, 77-84. https://doi.org/10.1002/xrs.2657.
  • Hinesly, T. D., Redberg, K. E., Pietz, R. I. & Ziegler, E. L. (1984). Cadmium and Zinc Uptake by Corn (Zea mays L.) with Repeated Applications of Sewage Sludge. Journal of Agricultural Food Chemistry, 32, 155-163. https://doi.org/10.1021/jf00121a037.
  • Hodkinson, B. & Lutzoni, F. (2009). A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Symbiosis, 49, 163-180. https://doi.org/10.1007/s13199-009-0049-3.
  • Huovinen, K. & Ahti, T. 1982. Biosequential patterns for the formation of depsides, depsidones, and dibenzofurans in the genus Cladonia (lichenforming ascomycetes). Annales Botanici Fennici 19, 225-234.
  • Hutchinson, J., Maynard, D. & Geiser, L. (2016). Air Quality and Lichens- A Literature Review Emphasizing the Pacific Northwest, USA, USDA Forest Service. http://gis.nacse.org/lichenair/index.php?page=literature, 1996. Accessed 18 Janurary 2021
  • Ila, P. (1988). Multielement Analysıs Of Lichen By Instrumental Neutron Activation Analysis. Journal of Radioanalytical and Nuclear Chemistry, 120, 247-252. https://doi.org/10.1007/BF02037339.
  • Kocakaya, Z., Kocakaya, M. & Şeker Karatoprak, G. (2021). Comparative analyses of antioxidant, cytotoxic and anti-inflammatory activities of different Cladonia species and determination of fumarprotocetraric acid amounts. KSU J. Agric Nat., 24(6), 1196-1207. https://doi.org/10.18016/ksutarimdoga.vi.868927.
  • Koz, B., Celik, N. & Cevik, U. (2010). Biomonitoring of heavy metals by epiphytic lichen species in Black Sea region of Turkey. Ecological Indicators 10,762-765.
  • Kroukamp, E.M., Godeto, T.W. & Forbes, P.B.C. (2020). Distribution patterns of arsenic species in a lichen biomonitor. Chemosphere, 250, 126199.
  • Markert, B. (1993). Plant as Biomonitors: Indicators for Heavy Metals in the Terrestrial Enviroment, Vch Weinheim, Newyork.
  • Mendil, D., Tuzen, M., Yazıcı, K. & Soylak, M. (2005). Heavy metals in lichens from roadsides and an industrial zone in Trabzon, Turkey. Bulletin of environmental contamination and toxicology, 74(1), 190-194. https://doi.org/10.1007/s00128-004-0567-x.
  • Miadlikowska, J., Kauff, F., Hofstetter, V., Fraker, E., Grube, M., Hafellner, J., Reeb, V., Hodkinson, B.P., ........... & Lutzoni, F. (2006). New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia, 98, 1088-1103. https://doi.org/10.1080/15572536.2006.11832636.
  • Michelot, D., Siobud, E., Poirier, F., Dore, J.C. & Viel, C. (1994). Metal content profiles in mushrooms: toxico-environmental implications and approach to the mechanism of bioaccumulation. Proceedings of the ‘‘2e`mes rencontres en toxinologie’’ JRT2, 17–18 November 1994, Paris, France. Toxicon 33, 1129.
  • Mishra, D. & Kar, M. (1974). Nickel in Plant Growth and Metabolism. The Botanical Review, 40, 395-452.
  • Nriagu, J. O. (1979). Global Inventory of Natural and Anthropogenic Emission of Trace Metals to the Atmosphere. Nature, 279, 409-411.
  • Osyczka, P. & Rola, K. (2013). Cladonia lichens as the most effective and essential pioneers in strongly contaminated slag dumps. Central European Journal Biology, 8, 876-887. https://doi.org/10.2478/s11535-013-0210-0.
  • Quevauviller, P.H., Herzig, R. & Muntau, H. (1996). Certified reference material of lichen (CRM 482) for the quality control of trace element biomonitoring. The Science of the Total Environment, 187, 143-152. https://doi.org/10.1016/0048-9697(96)05139-X
  • Rossbach, M., Jayasekera, R., Kniewald, G. & Thang, N.H. (1999). Large Scale Air Monitoring: Lichen vs. Air Particulate Matter Analysis. The Science of the Total Environment, 232, 59-66. https://doi.org/10.1016/s0048-9697(99)00110-2.
  • Reis, M.A., Alves, L.C., Freitas, M.C., van Os, B. & Wolterbeek, H. Th. (1999). Lichens (Parmelia sulcata time response model to environmental elemental availability. The Science of the Total Environment, 232, 105-115. Richardson, D. (1995). Metal uptake in lichens. Symbiosis. 18, 119-127.
  • Rinino, S., Bombardi, V., Giordani, P., Tretiach, M., Crisafulli, P., Monaci, F. & Modenesi, P. (2005). New Histochemical Techniques for the Localization of Metal Ions in the Lichen Thallus. The Lichenologist, 37, 463-466. https://doi.org/10.1017/S0024282905014908.
  • Rola, K. & Osyczka, P. (2014). Cryptogamic community structure as a bioindica-tor of soil condition along a pollution gradient. Environmental Monitoring Assessment, 186, 5897-5910. https://doi.org/10.1007/s10661-014-3827-1.
  • Krishnamurthy, S. & Wilkens, M.M. (1994). Environmental chemistry of Cr. Northeastern Geology, 16, 14-17.
  • Selbmann, L., Zucconi, L., Ruisi, S., Grube, M., Cardinale, M. & Onofri, S. (2010). Culturable bacteria associated with Antarctic lichens: affiliation and psychrotolerance. Polar Biology, 33, 71-83. https://doi.org/10.1007/s00300-009-0686-2.
  • Tokalıoğlu, Ş, Dokan, F. & Köprü, S. (2019). ICP-MS multi-element analysis for determining the origin by multivariate analysis of red pepper flakes from three different regions of Turkey. LWT- Food Science and Technology, 103, 301-307. https://doi.org/10.1016/j.lwt.2019.01.015.
  • Tuzen, M., Sesli, E. & Soylak, M. (2007). Trace element levels of mushroom species from East Black Sea region of Turkey. Food Control, 18, 806-810. https://doi.org/10.1016/j.foodcont.2006.04.003.
  • Vinogradov, A.R. (1962). Average contents of chemical elements in the principal type of igneous rocks of the Earth’s crust. Geochemistry, 7, 555-571.
  • Wolterbeek, B. (2020). Biomonitoring of Trace Element Air Pollution: Principles, Possibilities and Perspectives. Environmental Pollution, 120, 11-21. https://doi.org/10.1016/S0269-7491(02)00124-0.
  • Yayintas, O.T., Irkin, L.C., Yildiz, A. & Yilmaz, S. (2018). Determination of Trace Element Level in Some Lichens from Mount Ida (Çanakkale, Turkey) By ICP-MS. International Journal of Scientific and Technological Research, 4, 120-127.
  • Zahir, F., Rizwi, S.J., Haq, S.K. & Khan, R.H. (2005). Low dose mercury toxicity and human health. Environmental Toxicology and Pharmacology, 20, 351-360. https://doi.org/10.1016/j.etap.2005.03.007.

Türkiye'deki Bazı Cladonia Türlerindeki Eser Elementlerin ICP-MS ile Belirlenmesi

Year 2022, Volume: 22 Issue: 2, 135 - 146, 27.09.2022
https://doi.org/10.17475/kastorman.1179052

Abstract

Çalışmanın amacı: Likenler, çeşitli elementler açısından hem doğal hem de yapay kaynaklı çevresel kirliliğin biyolojik göstergeleridir. Türkiye’nin farklı bölgelerinden toplanmış Cladonia cinsine ait 9 örnekte (Cladonia coniocraea, C. fimbriata, C. firma, C. foliacea, C. furcate, C. pocillum, C. pyxidata, C. rangiformis and C. subulata) Alüminyum, Krom, Mangan, Demir, Kobalt, Nikel, Bakır, Çinko, Arsenik, Selenyum, Stronsiyum, Kadmiyum, Kalay, Cıva ve Kurşun element miktarları araştırılmıştır.
Çalışma alanı: Türkiye’de 7 farklı ilde yapılmış arazi çalışmalarında aynı cinse ait liken örnekleri toplanmıştır.
Materyal ve yöntem: Tüm örnekler bağımsız olarak mikrodalga sistemde asit ortamında çözünürleştirildikten sonra ve üç paralel halinde analiz edilmiştir. Sonuçların doğruluğu, 1.547 Şeftali Yaprağı sertifikalı referans materyalin analiziyle onaylanmıştır.
Temel sonuçlar: Metallerin kaynakları, metal birikim mekanizmaları ve likenler tarafından ne kadar absorblandıkları belirlenmiştir. Cladonia firma’da en yüksek Al, Cr, Ni konsantrasyonları sırasıyla 429.3, 3.04, 13.53 µg/g'dır. Cladonia subulata'da en yüksek Co, Sr, Cu, Se, Hg konsantrasyonları sırasıyla 0.81, 33.59, 13.16, 0.158, 0.060 µg/g'dır. Cladonia pyxidata'da en yüksek Pb, Cd, Sn konsantrasyonları sırasıyla 5.90, 0.30, 6.50 µg/g'dır. En yüksek Fe, Mn, Zn, As konsantrasyonları sırasıyla 228.7, 17.8, 26.44, 1.335 µg/g'dır.
Araştırma vurguları: Sonuçlar likenlerde metal birikiminin doğrudan likenlerin toplandığı ortamla ilişkili olduğunu göstermiştir.

References

  • Adamo, P., Giordano, S., Vingiani, S., Cobianchi, R. C. & Violante, P. (2003). Trace element accumulation by moss and lichen exposed in bags in the city of Naples (Italy). Environmental Pollution, 122, 91-103. https://doi.org/10.1016/S0269-7491(02)00277-4.
  • Ahmadjian, V.H. (1995). Lichens are more important than you think. Bioscience, 45, 123-124.
  • Ahti, T. & Hammer, S. (2002). Cladonia, in: T.H. Nash, B.D.Ryan, C. Gries, F. Bungartz (Eds), Lichen Flora of the Greater Sonoran Desert Region, Arizona State University, Tempe, 31-158.
  • Ahti, T., Stenroos, S. & Moberg, R. (2013). Nordic Lichen Flora, 5. Cladoniaceae, Museum of Evolution, Uppsala University.
  • Backor, M. & Loppi, S. (2009). Interactions of Lichens with Heavy Metals. Biologia Plantarum, 53, 214-222. https://doi.org/10.1007/s10535-009-0042-y.
  • Baffi, C., Bettinelli, M., Beone, G.M., & Spezia, S. (2002). Comparison of Different Analytical Procedures İn The Determination Of Trace Elements in Lichens. Chemosphere, 48, 299-306. https://doi.org/10.1016/S0045-6535(02)00094-2.
  • Bargagli, R. (1998). Trace Elements in Terrestrial Plants: An Ecophysiological Approach to Biomonitoring and Biorecovery, Springer, Berlin.
  • Berghof, application report (2008). Speedwave four microwave pressure digestion, food, pharma, cosmetics, Germany, p. 47.
  • Brodo, I. M., Sharnoff, S. D. & Sharnoff, S. (2001). Lichens of North American. Yale University Press, New Haven and London, 2001.
  • Callahan, D. L., Baker, A. J. M., Kolev, S. D. & Wedd, G. (2006). Metal ion ligands in hyperaccumulating plants. Journal of Biological Inorganic Chemistry, 11, 2-12. https://doi.org/10.1007/s00775-005-0056-7.
  • Cayir, A., Coskun, M. & Coskun, M. (2007). Determination of atmospheric heavy metal pollution in Canakkale and Balikesir Provinces using lichen (Cladonia rangiformis) as a bioindicator. Bulletin of Environmental Contamination and Toxicology, 79(4), 367-370. https://doi.org/10.1007/s00128-007-9232-5.
  • Chiarenzelli, K., Aspler, L., Dunn, C., Cousens, B., Ozarko, D. & Powis, K. (2001). Multi-element and rare earth element composition of lichens, mosses, and vascular plants from the Central Barrenlands, Nunavut, Canada. Applied Geochemistry, 16, 245-270. https://doi.org/10.1016/S0883-2927(00)00027-5.
  • Conti, M. E. & Cecchetti, G. (2001). Biological monitoring: lichens as bioindicators of air pollution assessment – a review. Environ. Pollut., 114(3), 471-492. https://doi.org/10.1016/S0269-7491(00)00224-4.
  • Demirbas, A. (2004). Trace element concentrations in ashes from various types of lichen biomass species. Energy sources, 26(5), 499-506. https://doi.org/10.1080/00908310490429687.
  • Driscoll, C. T. & Schecher, W. D. (1990). The chemistry of aluminum in the environment. Environmental Geochemistry and Health, 12(1), 28-49.
  • Egyed, M. & Wood, G.C. (1996). Risk assessment for combustion products of the gasoline additive MMT in Canada. The Science of the Total Environment, 189, 11-20. https://doi.org/10.1016/0048-9697(96)05185-6.
  • Elix, J.A. (1996). Biochemistry and secondary metabolites. in: T.H. Nash, (ed.), Lichen Biology Cambridge University Press, Cambridge, 154-180.
  • FAO/WHO (2003). Codex Alimentarius International Food Standards Codex Stan -179. Codex Alimentarius commission.
  • Forstner, U. & Wittmann, G. T. W. (1979) Metal Pollution in the Aquatic Environment, Springer-Verlag: Berlin.
  • Gadd, G. M. (1993). Interactions of fungi with toxic metals. New Phytologist 124, 25-60. https://doi.org/10.1111/j.1469-8137.1993.tb03796.x.
  • Garty, J. (2001). Biomonitoring Atmospheric Heavy Metals with Lichens: Theory and Application. Critical Reviews in Plant Sciences 20. 309-371. https://doi.org/10.1080/20013591099254.
  • Garty, J. & Ammann, K. (1987). The amounts of Ni, Cr, Zn, Pb, Cu, Fe and Mn in some lichens growing in Switzerland. Environmental and Experimental Botany 27, 127-138. https://doi.org/10.1016/0098-8472(87)90063-3.
  • Gilbert, O. L. (1980). Effect of land-use on terricolous lichens. The Lichenologist, 12, 117-124. https://doi.org/10.1017/S0024282980000047.
  • Gilbert, O. L. (1990). The lichen flora of urban wasteland. Lichenologist, 22, 87–101. https://doi.org/10.1017/S0024282990000056.
  • Hawkworth, D. L. (1988). The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Botanical journal of the Linnean Society, 96, 3-20. https://doi.org/10.1111/j.1095-8339.1988.tb00623.x.
  • Herrero Fernandez, Z., Estevez Alvarez, J.R., Montero Alvarez, A., Pupo Gonzalez, I., dos Santos Júnior, J. A., Ortueta Milan, M., & Padilla Alvarez, R. (2016). Multielement analysis of lichen samples using XRF methods. Comparison with ICP‐AES and FAAS. X‐Ray Spectrometry, 45, 77-84. https://doi.org/10.1002/xrs.2657.
  • Hinesly, T. D., Redberg, K. E., Pietz, R. I. & Ziegler, E. L. (1984). Cadmium and Zinc Uptake by Corn (Zea mays L.) with Repeated Applications of Sewage Sludge. Journal of Agricultural Food Chemistry, 32, 155-163. https://doi.org/10.1021/jf00121a037.
  • Hodkinson, B. & Lutzoni, F. (2009). A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Symbiosis, 49, 163-180. https://doi.org/10.1007/s13199-009-0049-3.
  • Huovinen, K. & Ahti, T. 1982. Biosequential patterns for the formation of depsides, depsidones, and dibenzofurans in the genus Cladonia (lichenforming ascomycetes). Annales Botanici Fennici 19, 225-234.
  • Hutchinson, J., Maynard, D. & Geiser, L. (2016). Air Quality and Lichens- A Literature Review Emphasizing the Pacific Northwest, USA, USDA Forest Service. http://gis.nacse.org/lichenair/index.php?page=literature, 1996. Accessed 18 Janurary 2021
  • Ila, P. (1988). Multielement Analysıs Of Lichen By Instrumental Neutron Activation Analysis. Journal of Radioanalytical and Nuclear Chemistry, 120, 247-252. https://doi.org/10.1007/BF02037339.
  • Kocakaya, Z., Kocakaya, M. & Şeker Karatoprak, G. (2021). Comparative analyses of antioxidant, cytotoxic and anti-inflammatory activities of different Cladonia species and determination of fumarprotocetraric acid amounts. KSU J. Agric Nat., 24(6), 1196-1207. https://doi.org/10.18016/ksutarimdoga.vi.868927.
  • Koz, B., Celik, N. & Cevik, U. (2010). Biomonitoring of heavy metals by epiphytic lichen species in Black Sea region of Turkey. Ecological Indicators 10,762-765.
  • Kroukamp, E.M., Godeto, T.W. & Forbes, P.B.C. (2020). Distribution patterns of arsenic species in a lichen biomonitor. Chemosphere, 250, 126199.
  • Markert, B. (1993). Plant as Biomonitors: Indicators for Heavy Metals in the Terrestrial Enviroment, Vch Weinheim, Newyork.
  • Mendil, D., Tuzen, M., Yazıcı, K. & Soylak, M. (2005). Heavy metals in lichens from roadsides and an industrial zone in Trabzon, Turkey. Bulletin of environmental contamination and toxicology, 74(1), 190-194. https://doi.org/10.1007/s00128-004-0567-x.
  • Miadlikowska, J., Kauff, F., Hofstetter, V., Fraker, E., Grube, M., Hafellner, J., Reeb, V., Hodkinson, B.P., ........... & Lutzoni, F. (2006). New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia, 98, 1088-1103. https://doi.org/10.1080/15572536.2006.11832636.
  • Michelot, D., Siobud, E., Poirier, F., Dore, J.C. & Viel, C. (1994). Metal content profiles in mushrooms: toxico-environmental implications and approach to the mechanism of bioaccumulation. Proceedings of the ‘‘2e`mes rencontres en toxinologie’’ JRT2, 17–18 November 1994, Paris, France. Toxicon 33, 1129.
  • Mishra, D. & Kar, M. (1974). Nickel in Plant Growth and Metabolism. The Botanical Review, 40, 395-452.
  • Nriagu, J. O. (1979). Global Inventory of Natural and Anthropogenic Emission of Trace Metals to the Atmosphere. Nature, 279, 409-411.
  • Osyczka, P. & Rola, K. (2013). Cladonia lichens as the most effective and essential pioneers in strongly contaminated slag dumps. Central European Journal Biology, 8, 876-887. https://doi.org/10.2478/s11535-013-0210-0.
  • Quevauviller, P.H., Herzig, R. & Muntau, H. (1996). Certified reference material of lichen (CRM 482) for the quality control of trace element biomonitoring. The Science of the Total Environment, 187, 143-152. https://doi.org/10.1016/0048-9697(96)05139-X
  • Rossbach, M., Jayasekera, R., Kniewald, G. & Thang, N.H. (1999). Large Scale Air Monitoring: Lichen vs. Air Particulate Matter Analysis. The Science of the Total Environment, 232, 59-66. https://doi.org/10.1016/s0048-9697(99)00110-2.
  • Reis, M.A., Alves, L.C., Freitas, M.C., van Os, B. & Wolterbeek, H. Th. (1999). Lichens (Parmelia sulcata time response model to environmental elemental availability. The Science of the Total Environment, 232, 105-115. Richardson, D. (1995). Metal uptake in lichens. Symbiosis. 18, 119-127.
  • Rinino, S., Bombardi, V., Giordani, P., Tretiach, M., Crisafulli, P., Monaci, F. & Modenesi, P. (2005). New Histochemical Techniques for the Localization of Metal Ions in the Lichen Thallus. The Lichenologist, 37, 463-466. https://doi.org/10.1017/S0024282905014908.
  • Rola, K. & Osyczka, P. (2014). Cryptogamic community structure as a bioindica-tor of soil condition along a pollution gradient. Environmental Monitoring Assessment, 186, 5897-5910. https://doi.org/10.1007/s10661-014-3827-1.
  • Krishnamurthy, S. & Wilkens, M.M. (1994). Environmental chemistry of Cr. Northeastern Geology, 16, 14-17.
  • Selbmann, L., Zucconi, L., Ruisi, S., Grube, M., Cardinale, M. & Onofri, S. (2010). Culturable bacteria associated with Antarctic lichens: affiliation and psychrotolerance. Polar Biology, 33, 71-83. https://doi.org/10.1007/s00300-009-0686-2.
  • Tokalıoğlu, Ş, Dokan, F. & Köprü, S. (2019). ICP-MS multi-element analysis for determining the origin by multivariate analysis of red pepper flakes from three different regions of Turkey. LWT- Food Science and Technology, 103, 301-307. https://doi.org/10.1016/j.lwt.2019.01.015.
  • Tuzen, M., Sesli, E. & Soylak, M. (2007). Trace element levels of mushroom species from East Black Sea region of Turkey. Food Control, 18, 806-810. https://doi.org/10.1016/j.foodcont.2006.04.003.
  • Vinogradov, A.R. (1962). Average contents of chemical elements in the principal type of igneous rocks of the Earth’s crust. Geochemistry, 7, 555-571.
  • Wolterbeek, B. (2020). Biomonitoring of Trace Element Air Pollution: Principles, Possibilities and Perspectives. Environmental Pollution, 120, 11-21. https://doi.org/10.1016/S0269-7491(02)00124-0.
  • Yayintas, O.T., Irkin, L.C., Yildiz, A. & Yilmaz, S. (2018). Determination of Trace Element Level in Some Lichens from Mount Ida (Çanakkale, Turkey) By ICP-MS. International Journal of Scientific and Technological Research, 4, 120-127.
  • Zahir, F., Rizwi, S.J., Haq, S.K. & Khan, R.H. (2005). Low dose mercury toxicity and human health. Environmental Toxicology and Pharmacology, 20, 351-360. https://doi.org/10.1016/j.etap.2005.03.007.
There are 54 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Semiha Köprü This is me

Fatma Dokan This is me

Zekiye Kocakaya This is me

Sedat Per This is me

Mehmet Çadır This is me

Mustafa Kocakaya This is me

Early Pub Date September 24, 2022
Publication Date September 27, 2022
Published in Issue Year 2022 Volume: 22 Issue: 2

Cite

APA Köprü, S., Dokan, F., Kocakaya, Z., Per, S., et al. (2022). Determination of Trace Elements of Some Cladonia Species from Turkey by ICP-MS. Kastamonu University Journal of Forestry Faculty, 22(2), 135-146. https://doi.org/10.17475/kastorman.1179052
AMA Köprü S, Dokan F, Kocakaya Z, Per S, Çadır M, Kocakaya M. Determination of Trace Elements of Some Cladonia Species from Turkey by ICP-MS. Kastamonu University Journal of Forestry Faculty. September 2022;22(2):135-146. doi:10.17475/kastorman.1179052
Chicago Köprü, Semiha, Fatma Dokan, Zekiye Kocakaya, Sedat Per, Mehmet Çadır, and Mustafa Kocakaya. “Determination of Trace Elements of Some Cladonia Species from Turkey by ICP-MS”. Kastamonu University Journal of Forestry Faculty 22, no. 2 (September 2022): 135-46. https://doi.org/10.17475/kastorman.1179052.
EndNote Köprü S, Dokan F, Kocakaya Z, Per S, Çadır M, Kocakaya M (September 1, 2022) Determination of Trace Elements of Some Cladonia Species from Turkey by ICP-MS. Kastamonu University Journal of Forestry Faculty 22 2 135–146.
IEEE S. Köprü, F. Dokan, Z. Kocakaya, S. Per, M. Çadır, and M. Kocakaya, “Determination of Trace Elements of Some Cladonia Species from Turkey by ICP-MS”, Kastamonu University Journal of Forestry Faculty, vol. 22, no. 2, pp. 135–146, 2022, doi: 10.17475/kastorman.1179052.
ISNAD Köprü, Semiha et al. “Determination of Trace Elements of Some Cladonia Species from Turkey by ICP-MS”. Kastamonu University Journal of Forestry Faculty 22/2 (September 2022), 135-146. https://doi.org/10.17475/kastorman.1179052.
JAMA Köprü S, Dokan F, Kocakaya Z, Per S, Çadır M, Kocakaya M. Determination of Trace Elements of Some Cladonia Species from Turkey by ICP-MS. Kastamonu University Journal of Forestry Faculty. 2022;22:135–146.
MLA Köprü, Semiha et al. “Determination of Trace Elements of Some Cladonia Species from Turkey by ICP-MS”. Kastamonu University Journal of Forestry Faculty, vol. 22, no. 2, 2022, pp. 135-46, doi:10.17475/kastorman.1179052.
Vancouver Köprü S, Dokan F, Kocakaya Z, Per S, Çadır M, Kocakaya M. Determination of Trace Elements of Some Cladonia Species from Turkey by ICP-MS. Kastamonu University Journal of Forestry Faculty. 2022;22(2):135-46.

14178  14179       14165           14166           14167            14168