Research Article
BibTex RIS Cite

Maden Sahasından Ağır Metallerin (Cd, Zn, Pb) Ayçiçeği (Helianthus annuus) Bitkisiyle Fitoekstraksiyonu

Year 2023, Volume: 23 Issue: 1, 75 - 85, 24.03.2023
https://doi.org/10.17475/kastorman.1269527

Abstract

Çalışmanın amacı: Bu çalışmanın amacı, maden işletmesindeki pasa döküm sahasından alınan bakır (Cu), çinko (Zn) ve Kurşun (Pb) ile kirlenmiş topraklarda, biyoenerji bitkisi olarak da kullanılabilen ayçiçeği (Helianthus annuus L.) bitkisinin fitoremediasyon kapasitesinin belirlenmesidir.
Çalışma alanı: Artvin Çoruh Üniversitesi Araştırma serası ortamında fitoremediasyon çalışması yapılmıştır.
Materyal ve Yöntem: Çalışmada temiz ve kirli toprak %0, %50 ve %100 oranlarında karıştırılarak bitki yetiştirilmiştir. Araştırmada toprak ve bitki örneklerinin ağır metal konsantrasyonları ölçülerek bitkilerin biyoakümülasyon (BAF) ve traslokasyon (TF) faktörleri hesaplanmıştır. Biyoakümülasyon faktörü sürgünlerdeki metal konsantrasyonunun topraktaki metal konsantrasyonuna oranını, translokasyon faktörü ise bitki yeşil aksamındaki metal derişiminin kök metal derişimine oranını ifade eder.
Sonuçlar: Ayçiçeği bitkisi Zn metalini en fazla yeşil aksamda, Cu ve Pb metallerini ise kökte biriktirmiştir. Bitkinin BAF değerleri ortalamaları Zn için 0.72, Pb için 0.5 ve Cu için 0.28, TF değerleri ortalamaları ise Zn için 1.25, Pb için 0.97 ve Cu için 0.52 olarak belirlenmiştir.
Önemli vurgular: Elde edilen bulgular, ayçiçeği bitkisinin ağır metaller ile kirlenmiş toprakların iyileştirilmesi için Cu metalinin fitostabilizasyonunda, Zn ve Pb metalinin ise fitoekstraksiyonunda kullanılabileceğini göstermektedir.

References

  • Abdelhafez, A.A., Li, J. & Abbas, M.H. (2014). Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil. Chemosphere, 117, 66-71.
  • Abou-Shanab, R.A.E.A. (2011). Bioremediation: new approaches and trends. In Biomanagement of metal-contaminated soils, Springer, Dordrecht, 65-94.
  • Alaboudi, K.A., Ahmed, B. & Brodie, G. (2018). Phytormediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Annals of Agricultural Sciences, 63(1), 123-127.
  • Al-Jobori, K.M. & Kadhim, A.K. (2019). Evaluation of sunflower (Helianthus annuus L.) for phytoremediation of lead contaminated soil. Journal of Pharmaceutical Sciences and Research, 11(3), 847-854.
  • Amanullah, I., & Inamullah, X. (2016). Dry matter partitioning and harvest index differ in rice genotypes with variable rates of phosphorus and zinc nutrition. Rice Science, 23(2), 78-87.
  • Amin, H., Arain, B.A., Abbasi, M.S., Jahangir, T.M., & Amin, F. (2018). Potential for phytoextraction of Cu by Sesamum indicum L. and Cyamopsis tetragonoloba L.: a green solution to decontaminate soil. Earth Systems and Environment, 2(1), 133-143.
  • Angelova, V., Ivanova, R., Todorov, Z. & Ivanov, K. (2016). Potential of Sunflower (Helianthus Annuus L.) for Phytoremediation of Soils Contaminated with Heavy Metals. Agricultural Sciences/Agrarni Nauki, 8(20).
  • Anonymous, (2005). Official Gazette. Soil Pollution Control Regulation. Issue: 25831, Date: 31.05.2005.
  • Aybar, M., Bilgin, A. & Sağlam, B. (2015). Removal heavy metals from the soil with phytoremediation. Journal of Natural Hazards and Environment, 1(1-2), 59-65.
  • Baker, A.J., McGrath, S.P., Reeves, R.D. & Smith, J.A.C. (2020). Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal polluted soils. Phytoremediation of Contaminated Soil and Water, 85-107.
  • Blaylock, M.J., Salt, D.E., Dushenkov, S., Zakharova, O., Gussman, C., et al. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science & Technology, 31(3), 860-865.
  • Bouyoucos, GI. (1951). A Calibration of the Hydrometer Method for Making Mechinal Analysis of the Soils. Agronomy Journal, 4, 9-434.
  • Chirakkara, R.A. & Reddy, K.R. (2015). Biomass and chemical amendments for enhanced phytoremediation of mixed contaminated soils. Ecological Engineering, 85, 265-274.
  • Dağhan, H. (2007). Phytoremediation: Cleaning contaminated areas using plants. GAP V. Agriculture Congress Proceedings, 362-367.
  • Dağhan, H., Köleli, N., Uygur, V., Arslan, M., Önder, D., et al. (2012). Investigation of the use of transgenic tobacco plant in phytoextraction treatment of cadmium contaminated soils. Soil Water Journal, 1(1), 1-6.
  • Delil, A.D., Köleli, N., Dağhan, H. & Bahçeci, G. (2020). Recovery of heavy metals from canola (Brassica napus) and soybean (Glycine max) biomasses using electrochemical process. Environmental Technology & Innovation, 17, 100559.
  • Dellisanti, F., Rossi, P.L. & Valdrè, G. (2009). In-field remediation of tons of heavy metal-rich waste by Joule heating vitrification. International Journal of Mineral Processing, 93(3-4), 239-245.
  • Eckhardt, H. & Khanal, S.K. (1999). Suitability of Bangkok sewage and nightsoil sludges for agricultural use with emphasis on potentially toxic elements. Journal of Environmental Science & Health Part A, 34(10), 2007-2021.
  • Evangelou, M.W., Daghan, H. & Schaeffer, A. (2004). The influence of humic acids on the phytoextraction of cadmium from soil. Chemosphere, 57(3), 207-213.
  • Forte, J. & Mutiti, S. (2017). Phytoremediation potential of Helianthus annuus and Hydrangea paniculata in copper and lead-contaminated soil. Water, Air, & Soil Pollution, 228(2), 1-11.
  • Govarthanan, M., Mythili, R., Selvankumar, T., Kamala-Kannan, S. & Kim, H. (2018). Myco-phytormediation of arsenic- and lead-contaminated soils by Helianthus annuus and wood rot fungi, Trichoderma spp. Isolated from decayed wood. Ecotoxicology and Environmental Safety, 151, 279-284.
  • Grzegórska, A., Rybarczyk, P., Rogala, A. & Zabrocki, D. (2020). Phytormediation-From Environment Cleaning to Energy Generatio-Current Status and Future Perspectives. Energies, 13(11), 2905.
  • Gurajala, H.K., Cao, X., Tang, L., Ramesh, T.M., Lu, M. & Yang, X. (2019). Comparative assessment of Indian mustard (Brassica juncea L.) genotypes for phytoremediation of Cd and Pb contaminated soils. Environmental Pollution, 254, 113085.
  • Haque, N., Peralta-Videa, J.R., Jones, G.L., Gill, T.E. & Gardea-Torresdey, J.L. (2008). Screening the phytoremediation potential of desert broom (Baccharis sarothroides Gray) growing on mine tailings in Arizona, USA. Environmental Pollution, 153(2), 362-368.
  • Hamvumba, R., Mataa, M. & Mweetwa, AM (2014). Evaluation of sunflower (Helianthus annuus L.), sorghum (Sorghum bicolor L.) and chinese cabbage (Brassica chinensis) for phytoremediation of lead contaminated soils. Environment and Pollution, 3(2), 65.
  • He, J., Strezov, V., Kumar, R., Weldekidan, H., Jahan, S., et al. (2019). Pyrolysis of heavy metal contaminated Avicennia marina biomass from phytoremediation: Characterisation of biomass and pyrolysis products. Journal of Cleaner Production, 234, 1235-1245.
  • Jadia, C.D. & Fulekar, M.H. (2008). Phytoremediation: The application of vermicompost to remove zinc, cadmium, copper, nickel and lead by sunflower plant. Environmental Engineering & Management Journal, 7(5).
  • Jing, Y.D., He, Z.L. & Yang, X.E. (2007). Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. Journal of Zhejiang University Science B, 8(3), 192-207.
  • Kacar, B. (1984). Plant Nutrition. Ankara University. Faculty of Agriculture Arrow. No: 899, 169-175.
  • Kabata-Pendias, A. (2000). Trace Elements ın Soils and Plants, third ed. CRC Press, FL USA.
  • Kacálková, L., Tlustoš, P. & Száková, J. (2015). Phytoextraction of risk elements by willow and poplar trees. International Journal of Phytoremediation, 17(5), 414-421.
  • Karami, A. & Shamsuddin, Z.H. (2010). Phytoremediation of heavy metals with several efficiency enhancer methods. African Journal of Biotechnology, 9(25), 3689-3698.
  • Kötschau, A., Büchel, G., Einax, J.W., von Tümpling, W. & Merten, D. (2014). Sunflower (Helianthus annuus): Phytoextraction Capacity for heavy metals on a mining-influenced area in Thuringia, Germany. Environmental Earth Sciences, 72(6), 2023-2031.
  • Lasat, M.M. (2002). Phytoextraction of toxic metals: A review of biological mechanisms. Journal of Environmental Quality, 31(1), 109-120.
  • Lee, K.K., Cho, H. S., Moon, Y.C., Ban, S.J. & Kim, J.Y. (2013). Cadmium and lead uptake capacity of energy crops and distribution of metals within the plant structures. KSCE Journal of Civil Engineering, 17(1), 44-50.
  • Marques, A.P., Oliveira, R.S., Rangel, A.O. & Castro, P.M. (2008). Application of manure and compost to contaminated soils and its effect on zinc accumulation by Solanum nigrum inoculated with arbuscular mycorrhizal fungi. Environmental Pollution, 151(3), 608-620.
  • Mellem, J.J., Baijnath, H. & Odhav, B. (2012). Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by Amaranthus dubius. African Journal of Agricultural Research, 7(4), 591-596.
  • Mendez, M.O. & Maier, R.M. (2008). Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environmental Health Perspectives, 116(3), 278-283.
  • Nelson, D.W. & Sommers, L.E. (1996). Total carbon, organic carbon, and organic matter. Methods of Soil Analysis: Part 3 Chemical Methods, 5, 961-1010.
  • Nouri, J., Khorasani, N., Lorestani, B., Karami, M., Hassani, A. H., et al. (2009). Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environmental Earth Sciences, 59(2), 315-323.
  • Li, M.S., Luo, Y.P. & Su, Z.Y. (2007). Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China. Environmental Pollution, 147(1), 168-175.
  • Lombi, E., Gerzabek, M.H. & Horak, O. (1998). Mobility of heavy metals in soil and their uptake by sunflowers grown at different contamination levels. Agronomie, 18(5-6), 361-371.
  • Ogundola, A.F., Adebayo, E.A. & Ajao, S.O. (2022). Phytoremediation: The ultimate technique for reinstating soil contaminated with heavy metals and other pollutants. In: Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water, Elsevier, 19-49.
  • Özel, H. U. & Özel, H. B. Investigation on Heavy Metal Pollution ın Uludag Fir Forests (Abies nordmanniana subsp. bornmülleriana MATTF) in the Bartın Region. Kastamonu University Journal of Forestry Faculty, 12(3), 155-160.
  • Park, B. & Son, Y. (2017). Ultrasonic and mechanical soil washing processes for the removal of heavy metals from soils. Ultrasonics Sonochemistry, 35, 640-645.
  • Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15-39.
  • Prieto, M.J., Acevedo, S.O.A., Prieto, G.F. & González, N.T. (2018). Phytoremediation of soils contaminated with heavy metals. Biodiversity International Journal, 2, 362-376.
  • Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees a review. Environment International, 29(4), 529-540.
  • Rahman, M., Azirun, S. & Boyce, A. (2013). Enhanced accumulation of copper and lead in amaranth (Amaranthus paniculatus), Indian mustard (Brassica juncea), and sunflower (Helianthus annuus). Institute of Biological Sciences, 8(5), 1-9.
  • Rafati, M., Khorasani, N., Moattar, F., Shirvany, A., Moraghebi, F., et al. (2011). Phytoremediation potential of Populus alba and Morus alba for cadmium, chromuim and nickel absorption from polluted soil. International Journal of Environmental Research, 5(4), 961-970.
  • Rezania, S., Taib, S.M., Din, M.F.M., Dahalan, F. A. & Kamyab, H. (2016). Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. Journal of Hazardous Materials, 318, 587-599.
  • Rezvani, M. & Zaefarian, F. (2011). Bioaccumulation and translocation factors of cadmium and lead in Aeluropus littoralis. Australian Journal of Agricultural Engineering, 2(4), 114-119.
  • Rizwan, M., Ali, S., Rizvi, H., Rinklebe, J., Tsang, D. C., et al. (2016). Phytomanagement of heavy metals in contaminated soils using sunflower: A review. Critical Reviews in Environmental Science and Technology, 46(18), 1498-1528.
  • Roy, S., Labelle, S., Mehta, P., Mihoc, A., Fortin, N., et al. (2005). Phytoremediation of heavy metal and PAH-contaminated brownfield sites. Plant and Soil, 272(1/2), 277-290.
  • Sağlam, B., Bilgin, A. & Aybar, M. (2020). Assessment of heavy metal pollution in soil and sediments of Murgul copper mine and its surroundings. Kastamonu University Journal of Forestry Faculty, 20(1), 25-37.
  • Sharma, S., Singh, B. & Manchanda, V.K. (2015). Phytoremediation: Role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environmental Science and Pollution Research, 22(2), 946-962.
  • Šijakova-Ivanova, T., Boev, B., Zajkova-Paneva, V., Boev, I. & Karakaševa, E. (2017). Bioaccumulation and translocation factor of heavy metals in the plants Linaria sp., Moricandia sp. and Viola lutea Huds from the Alšar locality–Republic of Macedonia. Geologica Macedonica, 31(2), 143-156.
  • Sheoran, V., Sheoran, A.S. & Poonia, P. (2010). Soil reclamation of abandoned mine land by revegetation: A review. International Journal of Soil, Sediment and Water, 3(2), 13.
  • Tőzsér, D., Tóthmérész, B., Harangi, S., Baranyai, E., Lakatos, G., et al. (2019). Remediation potential of early successional pioneer species Chenopodium album and Tripleurospermum inodorum. Nature Conservation, 36, 47-69.
  • Töre, G.Y. & Özkoç, Ö.B. (2022). Recent developments in aquatic macrophytes for environmental pollution control: A case study on heavy metal removal from lake water and agricultural return wastewater with the use of duckweed (Lemnacea). In: Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water. Elsevier, 75-127.
  • Ucaroglu, S. & Talinli, I. (2012). Recovery and safer disposal of phosphate coating sludge by solidification/stabilization. Journal of Environmental Management, 105, 131-137.
  • USEPA, (1996). US Environmental Protection Agency, EPA-Method 3052, Microwave assisted acid digestion of siliceous and organically based matrices. US Government Printing Office, Washington, DC.
  • Wu, W., Wu, P., Yang, F., Sun, D.L., Zhang, D. X., et al. (2018). Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility. Science of the Total Environment, 630, 53-61.
  • Yazdanbakhsh, A., Alavi, SN, Valadabadi, SA, Karimi, F. & Karimi, Z. (2020). Heavy metals uptake of salty soils by ornamental sunflower, using cow manure and biosolids: A case study in Alborz city, Iran. Air, Soil and Water Research, 13, 1-13.

Phytoextraction of Heavy Metal (Cu, Zn, Pb) from Mining Area by Sunflower (Helianthus annuus)

Year 2023, Volume: 23 Issue: 1, 75 - 85, 24.03.2023
https://doi.org/10.17475/kastorman.1269527

Abstract

Aim of study: The aim of this study was to determine the phytoremediation capacity of sunflower (Helianthus annuus L.), which can also be used as a bioenergy plant, in soils contaminated with copper (Cu), zinc (Zn) and lead (Pb) from the waste dumping sites during the mining operations.
Area of study: Phytoremediation study was carried out in Artvin Coruh University Research greenhouse environment.
Material and Methods: Plants were grown by mixing clean and contaminated soil at the rates of 0%, 50% and 100%. Bioaccumulation (BAF) and translocation (TF) factors were calculated by measuring heavy metal concentrations in soil and plant samples. The bioaccumulation factor is calculated by dividing the metal concentration in the shoots with the metal concentration in the soil. The translocation factor expresses the ratio of the metal concentration in the plant green parts to the root metal concentration.
Main results: The sunflower plant has accumulated the highest Zn in the shoots, while Cu and Pb have accumulated the highest in the roots. The mean BAF values of the plants were determined as 0.72 for Zn, 0.5 for Pb and 0.28 for Cu, while the mean TF values were determined as 1.25 for Zn, 0.97 for Pb and 0.52 for Cu.
Highlights: The findings show that the sunflower plant can be used in the phytostabilization of Cu metal and in the phytoextraction of Zn and Pb metal to reclaim heavy metal contaminated soils.

References

  • Abdelhafez, A.A., Li, J. & Abbas, M.H. (2014). Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil. Chemosphere, 117, 66-71.
  • Abou-Shanab, R.A.E.A. (2011). Bioremediation: new approaches and trends. In Biomanagement of metal-contaminated soils, Springer, Dordrecht, 65-94.
  • Alaboudi, K.A., Ahmed, B. & Brodie, G. (2018). Phytormediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Annals of Agricultural Sciences, 63(1), 123-127.
  • Al-Jobori, K.M. & Kadhim, A.K. (2019). Evaluation of sunflower (Helianthus annuus L.) for phytoremediation of lead contaminated soil. Journal of Pharmaceutical Sciences and Research, 11(3), 847-854.
  • Amanullah, I., & Inamullah, X. (2016). Dry matter partitioning and harvest index differ in rice genotypes with variable rates of phosphorus and zinc nutrition. Rice Science, 23(2), 78-87.
  • Amin, H., Arain, B.A., Abbasi, M.S., Jahangir, T.M., & Amin, F. (2018). Potential for phytoextraction of Cu by Sesamum indicum L. and Cyamopsis tetragonoloba L.: a green solution to decontaminate soil. Earth Systems and Environment, 2(1), 133-143.
  • Angelova, V., Ivanova, R., Todorov, Z. & Ivanov, K. (2016). Potential of Sunflower (Helianthus Annuus L.) for Phytoremediation of Soils Contaminated with Heavy Metals. Agricultural Sciences/Agrarni Nauki, 8(20).
  • Anonymous, (2005). Official Gazette. Soil Pollution Control Regulation. Issue: 25831, Date: 31.05.2005.
  • Aybar, M., Bilgin, A. & Sağlam, B. (2015). Removal heavy metals from the soil with phytoremediation. Journal of Natural Hazards and Environment, 1(1-2), 59-65.
  • Baker, A.J., McGrath, S.P., Reeves, R.D. & Smith, J.A.C. (2020). Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal polluted soils. Phytoremediation of Contaminated Soil and Water, 85-107.
  • Blaylock, M.J., Salt, D.E., Dushenkov, S., Zakharova, O., Gussman, C., et al. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science & Technology, 31(3), 860-865.
  • Bouyoucos, GI. (1951). A Calibration of the Hydrometer Method for Making Mechinal Analysis of the Soils. Agronomy Journal, 4, 9-434.
  • Chirakkara, R.A. & Reddy, K.R. (2015). Biomass and chemical amendments for enhanced phytoremediation of mixed contaminated soils. Ecological Engineering, 85, 265-274.
  • Dağhan, H. (2007). Phytoremediation: Cleaning contaminated areas using plants. GAP V. Agriculture Congress Proceedings, 362-367.
  • Dağhan, H., Köleli, N., Uygur, V., Arslan, M., Önder, D., et al. (2012). Investigation of the use of transgenic tobacco plant in phytoextraction treatment of cadmium contaminated soils. Soil Water Journal, 1(1), 1-6.
  • Delil, A.D., Köleli, N., Dağhan, H. & Bahçeci, G. (2020). Recovery of heavy metals from canola (Brassica napus) and soybean (Glycine max) biomasses using electrochemical process. Environmental Technology & Innovation, 17, 100559.
  • Dellisanti, F., Rossi, P.L. & Valdrè, G. (2009). In-field remediation of tons of heavy metal-rich waste by Joule heating vitrification. International Journal of Mineral Processing, 93(3-4), 239-245.
  • Eckhardt, H. & Khanal, S.K. (1999). Suitability of Bangkok sewage and nightsoil sludges for agricultural use with emphasis on potentially toxic elements. Journal of Environmental Science & Health Part A, 34(10), 2007-2021.
  • Evangelou, M.W., Daghan, H. & Schaeffer, A. (2004). The influence of humic acids on the phytoextraction of cadmium from soil. Chemosphere, 57(3), 207-213.
  • Forte, J. & Mutiti, S. (2017). Phytoremediation potential of Helianthus annuus and Hydrangea paniculata in copper and lead-contaminated soil. Water, Air, & Soil Pollution, 228(2), 1-11.
  • Govarthanan, M., Mythili, R., Selvankumar, T., Kamala-Kannan, S. & Kim, H. (2018). Myco-phytormediation of arsenic- and lead-contaminated soils by Helianthus annuus and wood rot fungi, Trichoderma spp. Isolated from decayed wood. Ecotoxicology and Environmental Safety, 151, 279-284.
  • Grzegórska, A., Rybarczyk, P., Rogala, A. & Zabrocki, D. (2020). Phytormediation-From Environment Cleaning to Energy Generatio-Current Status and Future Perspectives. Energies, 13(11), 2905.
  • Gurajala, H.K., Cao, X., Tang, L., Ramesh, T.M., Lu, M. & Yang, X. (2019). Comparative assessment of Indian mustard (Brassica juncea L.) genotypes for phytoremediation of Cd and Pb contaminated soils. Environmental Pollution, 254, 113085.
  • Haque, N., Peralta-Videa, J.R., Jones, G.L., Gill, T.E. & Gardea-Torresdey, J.L. (2008). Screening the phytoremediation potential of desert broom (Baccharis sarothroides Gray) growing on mine tailings in Arizona, USA. Environmental Pollution, 153(2), 362-368.
  • Hamvumba, R., Mataa, M. & Mweetwa, AM (2014). Evaluation of sunflower (Helianthus annuus L.), sorghum (Sorghum bicolor L.) and chinese cabbage (Brassica chinensis) for phytoremediation of lead contaminated soils. Environment and Pollution, 3(2), 65.
  • He, J., Strezov, V., Kumar, R., Weldekidan, H., Jahan, S., et al. (2019). Pyrolysis of heavy metal contaminated Avicennia marina biomass from phytoremediation: Characterisation of biomass and pyrolysis products. Journal of Cleaner Production, 234, 1235-1245.
  • Jadia, C.D. & Fulekar, M.H. (2008). Phytoremediation: The application of vermicompost to remove zinc, cadmium, copper, nickel and lead by sunflower plant. Environmental Engineering & Management Journal, 7(5).
  • Jing, Y.D., He, Z.L. & Yang, X.E. (2007). Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. Journal of Zhejiang University Science B, 8(3), 192-207.
  • Kacar, B. (1984). Plant Nutrition. Ankara University. Faculty of Agriculture Arrow. No: 899, 169-175.
  • Kabata-Pendias, A. (2000). Trace Elements ın Soils and Plants, third ed. CRC Press, FL USA.
  • Kacálková, L., Tlustoš, P. & Száková, J. (2015). Phytoextraction of risk elements by willow and poplar trees. International Journal of Phytoremediation, 17(5), 414-421.
  • Karami, A. & Shamsuddin, Z.H. (2010). Phytoremediation of heavy metals with several efficiency enhancer methods. African Journal of Biotechnology, 9(25), 3689-3698.
  • Kötschau, A., Büchel, G., Einax, J.W., von Tümpling, W. & Merten, D. (2014). Sunflower (Helianthus annuus): Phytoextraction Capacity for heavy metals on a mining-influenced area in Thuringia, Germany. Environmental Earth Sciences, 72(6), 2023-2031.
  • Lasat, M.M. (2002). Phytoextraction of toxic metals: A review of biological mechanisms. Journal of Environmental Quality, 31(1), 109-120.
  • Lee, K.K., Cho, H. S., Moon, Y.C., Ban, S.J. & Kim, J.Y. (2013). Cadmium and lead uptake capacity of energy crops and distribution of metals within the plant structures. KSCE Journal of Civil Engineering, 17(1), 44-50.
  • Marques, A.P., Oliveira, R.S., Rangel, A.O. & Castro, P.M. (2008). Application of manure and compost to contaminated soils and its effect on zinc accumulation by Solanum nigrum inoculated with arbuscular mycorrhizal fungi. Environmental Pollution, 151(3), 608-620.
  • Mellem, J.J., Baijnath, H. & Odhav, B. (2012). Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by Amaranthus dubius. African Journal of Agricultural Research, 7(4), 591-596.
  • Mendez, M.O. & Maier, R.M. (2008). Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environmental Health Perspectives, 116(3), 278-283.
  • Nelson, D.W. & Sommers, L.E. (1996). Total carbon, organic carbon, and organic matter. Methods of Soil Analysis: Part 3 Chemical Methods, 5, 961-1010.
  • Nouri, J., Khorasani, N., Lorestani, B., Karami, M., Hassani, A. H., et al. (2009). Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environmental Earth Sciences, 59(2), 315-323.
  • Li, M.S., Luo, Y.P. & Su, Z.Y. (2007). Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China. Environmental Pollution, 147(1), 168-175.
  • Lombi, E., Gerzabek, M.H. & Horak, O. (1998). Mobility of heavy metals in soil and their uptake by sunflowers grown at different contamination levels. Agronomie, 18(5-6), 361-371.
  • Ogundola, A.F., Adebayo, E.A. & Ajao, S.O. (2022). Phytoremediation: The ultimate technique for reinstating soil contaminated with heavy metals and other pollutants. In: Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water, Elsevier, 19-49.
  • Özel, H. U. & Özel, H. B. Investigation on Heavy Metal Pollution ın Uludag Fir Forests (Abies nordmanniana subsp. bornmülleriana MATTF) in the Bartın Region. Kastamonu University Journal of Forestry Faculty, 12(3), 155-160.
  • Park, B. & Son, Y. (2017). Ultrasonic and mechanical soil washing processes for the removal of heavy metals from soils. Ultrasonics Sonochemistry, 35, 640-645.
  • Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15-39.
  • Prieto, M.J., Acevedo, S.O.A., Prieto, G.F. & González, N.T. (2018). Phytoremediation of soils contaminated with heavy metals. Biodiversity International Journal, 2, 362-376.
  • Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees a review. Environment International, 29(4), 529-540.
  • Rahman, M., Azirun, S. & Boyce, A. (2013). Enhanced accumulation of copper and lead in amaranth (Amaranthus paniculatus), Indian mustard (Brassica juncea), and sunflower (Helianthus annuus). Institute of Biological Sciences, 8(5), 1-9.
  • Rafati, M., Khorasani, N., Moattar, F., Shirvany, A., Moraghebi, F., et al. (2011). Phytoremediation potential of Populus alba and Morus alba for cadmium, chromuim and nickel absorption from polluted soil. International Journal of Environmental Research, 5(4), 961-970.
  • Rezania, S., Taib, S.M., Din, M.F.M., Dahalan, F. A. & Kamyab, H. (2016). Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. Journal of Hazardous Materials, 318, 587-599.
  • Rezvani, M. & Zaefarian, F. (2011). Bioaccumulation and translocation factors of cadmium and lead in Aeluropus littoralis. Australian Journal of Agricultural Engineering, 2(4), 114-119.
  • Rizwan, M., Ali, S., Rizvi, H., Rinklebe, J., Tsang, D. C., et al. (2016). Phytomanagement of heavy metals in contaminated soils using sunflower: A review. Critical Reviews in Environmental Science and Technology, 46(18), 1498-1528.
  • Roy, S., Labelle, S., Mehta, P., Mihoc, A., Fortin, N., et al. (2005). Phytoremediation of heavy metal and PAH-contaminated brownfield sites. Plant and Soil, 272(1/2), 277-290.
  • Sağlam, B., Bilgin, A. & Aybar, M. (2020). Assessment of heavy metal pollution in soil and sediments of Murgul copper mine and its surroundings. Kastamonu University Journal of Forestry Faculty, 20(1), 25-37.
  • Sharma, S., Singh, B. & Manchanda, V.K. (2015). Phytoremediation: Role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environmental Science and Pollution Research, 22(2), 946-962.
  • Šijakova-Ivanova, T., Boev, B., Zajkova-Paneva, V., Boev, I. & Karakaševa, E. (2017). Bioaccumulation and translocation factor of heavy metals in the plants Linaria sp., Moricandia sp. and Viola lutea Huds from the Alšar locality–Republic of Macedonia. Geologica Macedonica, 31(2), 143-156.
  • Sheoran, V., Sheoran, A.S. & Poonia, P. (2010). Soil reclamation of abandoned mine land by revegetation: A review. International Journal of Soil, Sediment and Water, 3(2), 13.
  • Tőzsér, D., Tóthmérész, B., Harangi, S., Baranyai, E., Lakatos, G., et al. (2019). Remediation potential of early successional pioneer species Chenopodium album and Tripleurospermum inodorum. Nature Conservation, 36, 47-69.
  • Töre, G.Y. & Özkoç, Ö.B. (2022). Recent developments in aquatic macrophytes for environmental pollution control: A case study on heavy metal removal from lake water and agricultural return wastewater with the use of duckweed (Lemnacea). In: Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water. Elsevier, 75-127.
  • Ucaroglu, S. & Talinli, I. (2012). Recovery and safer disposal of phosphate coating sludge by solidification/stabilization. Journal of Environmental Management, 105, 131-137.
  • USEPA, (1996). US Environmental Protection Agency, EPA-Method 3052, Microwave assisted acid digestion of siliceous and organically based matrices. US Government Printing Office, Washington, DC.
  • Wu, W., Wu, P., Yang, F., Sun, D.L., Zhang, D. X., et al. (2018). Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility. Science of the Total Environment, 630, 53-61.
  • Yazdanbakhsh, A., Alavi, SN, Valadabadi, SA, Karimi, F. & Karimi, Z. (2020). Heavy metals uptake of salty soils by ornamental sunflower, using cow manure and biosolids: A case study in Alborz city, Iran. Air, Soil and Water Research, 13, 1-13.
There are 64 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Mustafa Aybar This is me

Bülent Sağlam This is me

Hatice Dağhan This is me

Aydın Tüfekçıoğlu This is me

Nurcan Kölelı This is me

Fatma Nur Yılmaz This is me

Publication Date March 24, 2023
Published in Issue Year 2023 Volume: 23 Issue: 1

Cite

APA Aybar, M., Sağlam, B., Dağhan, H., Tüfekçıoğlu, A., et al. (2023). Phytoextraction of Heavy Metal (Cu, Zn, Pb) from Mining Area by Sunflower (Helianthus annuus). Kastamonu University Journal of Forestry Faculty, 23(1), 75-85. https://doi.org/10.17475/kastorman.1269527
AMA Aybar M, Sağlam B, Dağhan H, Tüfekçıoğlu A, Kölelı N, Yılmaz FN. Phytoextraction of Heavy Metal (Cu, Zn, Pb) from Mining Area by Sunflower (Helianthus annuus). Kastamonu University Journal of Forestry Faculty. March 2023;23(1):75-85. doi:10.17475/kastorman.1269527
Chicago Aybar, Mustafa, Bülent Sağlam, Hatice Dağhan, Aydın Tüfekçıoğlu, Nurcan Kölelı, and Fatma Nur Yılmaz. “Phytoextraction of Heavy Metal (Cu, Zn, Pb) from Mining Area by Sunflower (Helianthus Annuus)”. Kastamonu University Journal of Forestry Faculty 23, no. 1 (March 2023): 75-85. https://doi.org/10.17475/kastorman.1269527.
EndNote Aybar M, Sağlam B, Dağhan H, Tüfekçıoğlu A, Kölelı N, Yılmaz FN (March 1, 2023) Phytoextraction of Heavy Metal (Cu, Zn, Pb) from Mining Area by Sunflower (Helianthus annuus). Kastamonu University Journal of Forestry Faculty 23 1 75–85.
IEEE M. Aybar, B. Sağlam, H. Dağhan, A. Tüfekçıoğlu, N. Kölelı, and F. N. Yılmaz, “Phytoextraction of Heavy Metal (Cu, Zn, Pb) from Mining Area by Sunflower (Helianthus annuus)”, Kastamonu University Journal of Forestry Faculty, vol. 23, no. 1, pp. 75–85, 2023, doi: 10.17475/kastorman.1269527.
ISNAD Aybar, Mustafa et al. “Phytoextraction of Heavy Metal (Cu, Zn, Pb) from Mining Area by Sunflower (Helianthus Annuus)”. Kastamonu University Journal of Forestry Faculty 23/1 (March 2023), 75-85. https://doi.org/10.17475/kastorman.1269527.
JAMA Aybar M, Sağlam B, Dağhan H, Tüfekçıoğlu A, Kölelı N, Yılmaz FN. Phytoextraction of Heavy Metal (Cu, Zn, Pb) from Mining Area by Sunflower (Helianthus annuus). Kastamonu University Journal of Forestry Faculty. 2023;23:75–85.
MLA Aybar, Mustafa et al. “Phytoextraction of Heavy Metal (Cu, Zn, Pb) from Mining Area by Sunflower (Helianthus Annuus)”. Kastamonu University Journal of Forestry Faculty, vol. 23, no. 1, 2023, pp. 75-85, doi:10.17475/kastorman.1269527.
Vancouver Aybar M, Sağlam B, Dağhan H, Tüfekçıoğlu A, Kölelı N, Yılmaz FN. Phytoextraction of Heavy Metal (Cu, Zn, Pb) from Mining Area by Sunflower (Helianthus annuus). Kastamonu University Journal of Forestry Faculty. 2023;23(1):75-8.

14178  14179       14165           14166           14167            14168