Research Article
BibTex RIS Cite

Kastamonu’da Küresel İklim Değişikliğine Bağlı Olarak Abies Yayılış Alanlarının Olası Değişimi

Year 2024, Volume: 24 Issue: 1, 81 - 91, 03.04.2024
https://doi.org/10.17475/kastorman.1460616

Abstract

Çalışmanın amacı: Küresel iklim değişikliği (GCC) sürecinde özellikle orman ağaçları için ihtiyaç duyulan göç mekanizmasının insanlar tarafından sağlanması gerekmektedir. Bu amaçla daha önce yapılan çalışmaların aksine küçük alanlarda yapılacak detaylı çalışmalara ihtiyaç bulunmaktadır.
Çalışma alanı: Türkiye'nin en yüksek düzeyde odun üretimini gerçekleştiren Kastamonu Orman Bölge Müdürlüğü'nde gerçekleştirilen bu çalışmada Abies'lerin gerçek yayılış alanlarının belirlenmesi ve uygun yayılış alanlarındaki değişimlerin belirlenmesi amaçlanmıştır.
Materyal ve yöntem: Bu çalışmada Kastamonu’da Abies için mevcut dağılım alanları ve gelecekteki potansiyel dağılım alanlarının yanı sıra 2040, 2070 ve 2100 yılları için SSP 126, SSP 370 ve SSP 585 senaryoları kullanılarak uygun dağılım alanları belirlenmiştir.
Temel sonuçlar: Bu çalışmada elde edilen sonuçlar, iklim değişikliğinin sonuçlarına bağlı olarak Abies populasyonlarının dağılım alanlarının gelecekte değişeceğini ve bu değişimin genel olarak artış şeklinde olacağını göstermiştir.
Araştırma vurguları: Çalışmaya konu tür (Abies), insan müdahalesi olmadan küresel iklim değişikliğine ayak uyduramayacaktır. Bu nedenle çalışma sonuçları dikkate alınarak orman amenajman planlarında gerekli değişikliklerin yapılması önerilmektedir.

References

  • Akkemik, Ü. (Ed.). (2018). Natural-exotic Trees and Shrubs of Turkey (p.684). General Directorate of Forestry Publications.
  • Akyol, A. & Örücü, Ö. K. (2020). Investigation and evaluation of stone pine Pinus pinea L. current and future potential distribution under climate change in Turkey. Cerne, 25, 415-423.
  • Bilgili, E., Küçük, Ö., Sağlam, B. & Coşkuner, A. (2021). Mega forest fires: causes, organization and management, Science and Thought Series, 33,1-23
  • Bogoni, J. A. & Tagliari, M. M. (2021). Potential distribution of piscivores across the Atlantic Forest: From bats and marsupials to large-bodied mammals under a trophic-guild viewpoint. Ecological Informatics, 64, 101357.
  • Brundu, G. & Richardson, D. M. (2016). Planted forests and invasive alien trees in Europe: a code for managing existing and future plantings to mitigate the risk of negative impacts from invasions. NeoBiota, 30, 5-47.
  • Canturk, U. & Kulac, S. (2021). The effects of climate change scenarios on Tilia ssp. in Turkey. Environmental Monitoring and Assessment, 193(12),771.
  • Çoban, H. O., Örücü, Ö. K. & Arslan, E. S. (2020). MaxEnt modeling for predicting the current and future potential geographical distribution of Quercus libani Olivier. Sustainability, 127, 2671.
  • Dyderski, M. K., Paź, S., Frelich, L. E. & Jagodziński, A. M. (2018). How much does climate change threaten European forest tree species distributions? Global Change Biology, 24(3), 1150-1163.
  • Elsunousi, A. A. M., Sevik, H., Cetin, M., Ozel, H. B. & Ucun Ozel, H. (2021). Periodical and regional change of particulate matter and CO2 concentration in Misurata. Environmental Monitoring Assessment, 193, 707.
  • Ertugrul, M., Varol, T., Ozel, H. B., Cetin, M. & Sevik, H. (2021). Influence of climatic factor of changes in forest fire danger and fire season length in Turkey. Environmental Monitoring and Assessment, 193(1), 1-17.
  • ESRI. (2017). ArcGIS Desktop: Release 10.5. Environmental Systems Research Institute.
  • Ghoma, W. E. O., Sevik, H. & Isinkaralar, K. (2022). Using indoor plants as biomonitors for detection of toxic metals by tobacco smoke. Air Quality, Atmosphere & Health, 15(3), 415-424.
  • Gómez-Pineda, E., Blanco-García, A., Lindig-Cisneros, R., O’Neill, G. A., Lopez-Toledo, L., et al. (2021). Pinus pseudostrobus assisted migration trial with rain exclusion: Maintaining Monarch Butterfly Biosphere Reserve forest cover in an environment affected by climate change. New Forests, 52(6), 995-1010.
  • Hirata, A., Nakamura, K., Nakao, K., Kominami, Y., Tanaka, N., et al. (2017). Potential distribution of pine wilt disease under future climate change scenarios. PLoS One, 12(8), e0182837.
  • Huang, S., Zheng, X., Ma, L., Wang, H., Huang, Q., et al. (2020). Quantitative contribution of climate change and human activities to vegetation cover variations based on GA-SVM model. Journal of Hydrology, 584, 124687.
  • Iverson, L., Knight, K. S., Prasad, A., Herms, D. A., Matthews, S., et al. (2016). Potential species replacements for black ash (Fraxinus nigra) at the confluence of two threats: Emerald ash borer and a changing climate. Ecosystems, 19(2), 248-270.
  • Karacocuk, T., Sevik, H., Isinkaralar, K., Turkyilmaz, A. & Cetin, M. (2022). The change of Cr and Mn concentrations in selected plants in Samsun city center depending on traffic density. Landscape and Ecological Engineering, 18, 75-83.
  • Kilicoglu, C., Cetin, M., Aricak, B. & Sevik, H. (2021) Integrating multicriteria decision-making analysis for a GIS-based settlement area in the district of Atakum, Samsun, Turkey. Theoretical and Applied Climatology, 143, 379-388.
  • Kim, J. & Kwon, H. (2022). Calculation of a climate change vulnerability index for nakdong watersheds considering non-point pollution sources. Applied Sciences, 129, 4775.
  • Koç, İ. (2022). Determining the near-future biocomfort zones in Samsun province by the global climate change scenarios. Kastamonu University Journal of Forestry Faculty, 22(2), 181-192.
  • Koç, İ., Nzokou, P. & Cregg, B. (2022). Biomass allocation and nutrient use efficiency in response to water stress: insight from experimental manipulation of balsam fir, concolor fir and white pine transplants. New Forests, 53(5), 915-933.
  • Kucuk, O., Bilgili, E. & Uzumcu, R. (2018). Modeling surface fire rate of spread within a thinned Anatolian black pine stand in Turkey. Forest systems, 27(2), 3.
  • Kurz, M., Koelz, A., Gorges, J., Carmona, B. P., Brang, P., et al. (2022). Tracing the origin of Oriental beech stands across Western Europe and reporting hybridization with European beech-implications for assisted gene flow. bioRxiv.
  • López-Tirado, J., Vessella, F., Stephan, J., Ayan, S., Schirone, B., et al. (2021). Effect of climate change on potential distribution of Cedrus libani A Rich in the twenty-first century: An Ecological Niche Modeling assessment. New Forests, 52(3), 363-376.
  • McGregor, S., Cassou, C., Kosaka, Y. & Phillips, A. S. (2022). Projected ENSO teleconnection changes in CMIP6. Geophysical Research Letters, 4911, e2021GL097511.
  • Ning, H., Ling, L., Sun, X., Kang, X. & Chen, H. (2021). Predicting the future redistribution of Chinese white pine Pinus armandii Franch. Under climate change scenarios in China using species distribution models. Global Ecology and Conservation, 25, e01420.
  • Oberle, B., Covey, K. R., Dunham, K. M., Hernandez, E. J., Walton, M. L., et al. (2018). Dissecting the effects of diameter on wood decay emphasizes the importance of cross-stem conductivity in Fraxinus americana. Ecosystems, 21(1), 85-97.
  • Ouyang, L., Arnold, R. J., Chen, S., Xie, Y., He, S., et al. (2022). Prediction of the suitable distribution of Eucalyptus grandis in China and its responses to climate change. New Forests, 53(1), 81-99.
  • Ozel, H. B., Abo Aisha, A. E. S., Cetin, M., Sevik, H. & Zeren Cetin, I. (2021). The effects of increased exposure time to UV-B radiation on germination and seedling development of Anatolian black pine seeds. Environmental Monitoring and Assessment, 193, 388.
  • Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., et al. (2018). Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia. Environmental and Experimental Botany, 152, 49-59.
  • Phillips, S. J. & Dudík, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31(2), 161-175.
  • Quinto, L., Navarro-Cerrillo, R. M., Palacios-Rodriguez, G., Ruiz-Gomez, F. & Duque-Lazo, J. (2021). The current situation and future perspectives of Quercus ilex and Pinus halepensis afforestation on agricultural land in Spain under climate change scenarios. New Forests, 52(1), 145-166.
  • Rahman, M., Islam, M., Wernicke, J. & Bräuning, A. (2018). Changes in sensitivity of tree-ring widths to climate in a tropical moist forest tree in Bangladesh. Forests, 9(12), 761.
  • Saha, A., Rahman, S. & Alam, S. (2021). Modeling current and future potential distributions of desert locust Schistocerca gregaria Forskål under climate change scenarios using MaxEnt. Journal of Asia-Pacific Biodiversity, 143, 399-409.
  • Savas, D. S., Sevik, H., Isinkaralar, K., Turkyilmaz, A. & Cetin, M. (2021). The potential of using Cedrus atlantica as a biomonitor in the concentrations of Cr and Mn. Environmental Science and Pollution Research, 28(39), 55446-55453.
  • Sevik, H., Cetin, M., Ozel, H. B., Erbek, A. & Cetin, I. Z. (2021). The effect of climate on leaf micromorphological characteristics in some broad-leaved species. Environment, Development and Sustainability, 23(4), 6395-6407.
  • Sulhan, O. F., Sevik, H. & Isinkaralar, K. (2022). Assessment of Cr and Zn deposition on Picea pungens Engelm. in urban air of Ankara, Türkiye. Environment, Development and Sustainability, 1-20.
  • Tekin, O., Cetin, M., Varol, T., Ozel, H. B., Sevik, H., et al. (2022). Altitudinal migration of species of Fir (Abies spp.) in adaptation to climate change. Water, Air, & Soil Pollution, 233(9), 1-16.
  • Thurm, E. A., Hernandez, L., Baltensweiler, A., Ayan, S., Rasztovits, E., et al. (2018). Alternative tree species under climate warming in managed European forests. Forest Ecology and Management, 430, 485-497.
  • Toczydlowski, A. J., Slesak, R. A., Kolka, R. K. & Venterea, R. T. (2020). Temperature and water-level effects on greenhouse gas fluxes from black ash (Fraxinus nigra) wetland soils in the Upper Great Lakes region, USA. Applied Soil Ecology, 153, 103565.
  • Varol, T., Canturk, U., Cetin, M., Ozel, H. B. & Sevik, H. (2021). Impacts of climate change scenarios on European ash tree (Fraxinus excelsior L.) in Turkey. Forest Ecology and Management. Forest Ecology and Management, 491(2021), 119199.
  • Varol, T., Cetin, M., Ozel, H. B., Sevik, H. & Zeren Cetin, I. (2022a). The effects of climate change scenarios on Carpinus betulus and Carpinus orientalis in Europe. Water, Air and Soil Pollution, 233, 45.
  • Varol, T., Canturk, U., Cetin, M., Ozel, H. B., Sevik, H., et al. (2022b). Identifying the suitable habitats for Anatolian boxwood (Buxus sempervirens L.) for the future regarding the climate change. Theoretical and Applied Climatology, 150(1), 637-647.
  • Walker, A. P., De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Iversen, C. M., et al. (2019). Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment. Nature Communications, 10(1), 1-13.
  • Wu, C. W., Xu, X. X., Zhang, G., Cheng, B. B. & Han, S. (2022). Predicting the potential suitable habitat for tamarix chinensis under climate change based on Cmip6 in China. Applied Ecology and Environmental Research, 204, 2845-2863.
  • Yayla, E. E., Sevik, H. & Isinkaralar, K. (2022). Detection of landscape species as a low-cost biomonitoring study: Cr, Mn, and Zn pollution in an urban air quality. Environmental Monitoring and Assessment, 194(10), 1-10.
  • Yigit, N., Mutevelli, Z., Sevik, H., Onat, S. M., Ozel, H. B., et al. (2021). identification of some fiber characteristics in Rosa sp. and Nerium oleander L. wood grown under different ecological conditions. BioResources, 16(3), 5862-5874.

Possible Change in Distribution Areas of Abies in Kastamonu due to Global Climate Change

Year 2024, Volume: 24 Issue: 1, 81 - 91, 03.04.2024
https://doi.org/10.17475/kastorman.1460616

Abstract

Aim of the study: In the process of global climate change (GCC), the migration mechanism needed especially for forest trees must be provided by humans. For this purpose, contrary to the previous studies, detailed studies to be carried out on small areas are needed.
Area of study: In the present study carried out in Kastamonu Regional Directorate of Forestry, which performs the highest level of wood production in Türkiye, it was aimed to specify the actual distribution areas of the Abies and the change in their suitable distribution areas due to GCC.
Material and methods: In this study, besides the existing distribution areas and the potential future distribution areas, also the suitable distribution areas were determined by using SSP 126, SSP 370, and SSP 585 scenarios for the years 2040, 2070, and 2100 for Abies at Kastamonu.
Main results: The results achieved there showed that, depending on the results of climate change, distribution areas of Abies populations would change in the future and this change would be in form of an increase in general.
Research highlights: This species (Abies) seems incapable of keeping up with such changes without human intervention. Thus, considering the study results, it is recommended to make necessary amendments to the forest management plans.

References

  • Akkemik, Ü. (Ed.). (2018). Natural-exotic Trees and Shrubs of Turkey (p.684). General Directorate of Forestry Publications.
  • Akyol, A. & Örücü, Ö. K. (2020). Investigation and evaluation of stone pine Pinus pinea L. current and future potential distribution under climate change in Turkey. Cerne, 25, 415-423.
  • Bilgili, E., Küçük, Ö., Sağlam, B. & Coşkuner, A. (2021). Mega forest fires: causes, organization and management, Science and Thought Series, 33,1-23
  • Bogoni, J. A. & Tagliari, M. M. (2021). Potential distribution of piscivores across the Atlantic Forest: From bats and marsupials to large-bodied mammals under a trophic-guild viewpoint. Ecological Informatics, 64, 101357.
  • Brundu, G. & Richardson, D. M. (2016). Planted forests and invasive alien trees in Europe: a code for managing existing and future plantings to mitigate the risk of negative impacts from invasions. NeoBiota, 30, 5-47.
  • Canturk, U. & Kulac, S. (2021). The effects of climate change scenarios on Tilia ssp. in Turkey. Environmental Monitoring and Assessment, 193(12),771.
  • Çoban, H. O., Örücü, Ö. K. & Arslan, E. S. (2020). MaxEnt modeling for predicting the current and future potential geographical distribution of Quercus libani Olivier. Sustainability, 127, 2671.
  • Dyderski, M. K., Paź, S., Frelich, L. E. & Jagodziński, A. M. (2018). How much does climate change threaten European forest tree species distributions? Global Change Biology, 24(3), 1150-1163.
  • Elsunousi, A. A. M., Sevik, H., Cetin, M., Ozel, H. B. & Ucun Ozel, H. (2021). Periodical and regional change of particulate matter and CO2 concentration in Misurata. Environmental Monitoring Assessment, 193, 707.
  • Ertugrul, M., Varol, T., Ozel, H. B., Cetin, M. & Sevik, H. (2021). Influence of climatic factor of changes in forest fire danger and fire season length in Turkey. Environmental Monitoring and Assessment, 193(1), 1-17.
  • ESRI. (2017). ArcGIS Desktop: Release 10.5. Environmental Systems Research Institute.
  • Ghoma, W. E. O., Sevik, H. & Isinkaralar, K. (2022). Using indoor plants as biomonitors for detection of toxic metals by tobacco smoke. Air Quality, Atmosphere & Health, 15(3), 415-424.
  • Gómez-Pineda, E., Blanco-García, A., Lindig-Cisneros, R., O’Neill, G. A., Lopez-Toledo, L., et al. (2021). Pinus pseudostrobus assisted migration trial with rain exclusion: Maintaining Monarch Butterfly Biosphere Reserve forest cover in an environment affected by climate change. New Forests, 52(6), 995-1010.
  • Hirata, A., Nakamura, K., Nakao, K., Kominami, Y., Tanaka, N., et al. (2017). Potential distribution of pine wilt disease under future climate change scenarios. PLoS One, 12(8), e0182837.
  • Huang, S., Zheng, X., Ma, L., Wang, H., Huang, Q., et al. (2020). Quantitative contribution of climate change and human activities to vegetation cover variations based on GA-SVM model. Journal of Hydrology, 584, 124687.
  • Iverson, L., Knight, K. S., Prasad, A., Herms, D. A., Matthews, S., et al. (2016). Potential species replacements for black ash (Fraxinus nigra) at the confluence of two threats: Emerald ash borer and a changing climate. Ecosystems, 19(2), 248-270.
  • Karacocuk, T., Sevik, H., Isinkaralar, K., Turkyilmaz, A. & Cetin, M. (2022). The change of Cr and Mn concentrations in selected plants in Samsun city center depending on traffic density. Landscape and Ecological Engineering, 18, 75-83.
  • Kilicoglu, C., Cetin, M., Aricak, B. & Sevik, H. (2021) Integrating multicriteria decision-making analysis for a GIS-based settlement area in the district of Atakum, Samsun, Turkey. Theoretical and Applied Climatology, 143, 379-388.
  • Kim, J. & Kwon, H. (2022). Calculation of a climate change vulnerability index for nakdong watersheds considering non-point pollution sources. Applied Sciences, 129, 4775.
  • Koç, İ. (2022). Determining the near-future biocomfort zones in Samsun province by the global climate change scenarios. Kastamonu University Journal of Forestry Faculty, 22(2), 181-192.
  • Koç, İ., Nzokou, P. & Cregg, B. (2022). Biomass allocation and nutrient use efficiency in response to water stress: insight from experimental manipulation of balsam fir, concolor fir and white pine transplants. New Forests, 53(5), 915-933.
  • Kucuk, O., Bilgili, E. & Uzumcu, R. (2018). Modeling surface fire rate of spread within a thinned Anatolian black pine stand in Turkey. Forest systems, 27(2), 3.
  • Kurz, M., Koelz, A., Gorges, J., Carmona, B. P., Brang, P., et al. (2022). Tracing the origin of Oriental beech stands across Western Europe and reporting hybridization with European beech-implications for assisted gene flow. bioRxiv.
  • López-Tirado, J., Vessella, F., Stephan, J., Ayan, S., Schirone, B., et al. (2021). Effect of climate change on potential distribution of Cedrus libani A Rich in the twenty-first century: An Ecological Niche Modeling assessment. New Forests, 52(3), 363-376.
  • McGregor, S., Cassou, C., Kosaka, Y. & Phillips, A. S. (2022). Projected ENSO teleconnection changes in CMIP6. Geophysical Research Letters, 4911, e2021GL097511.
  • Ning, H., Ling, L., Sun, X., Kang, X. & Chen, H. (2021). Predicting the future redistribution of Chinese white pine Pinus armandii Franch. Under climate change scenarios in China using species distribution models. Global Ecology and Conservation, 25, e01420.
  • Oberle, B., Covey, K. R., Dunham, K. M., Hernandez, E. J., Walton, M. L., et al. (2018). Dissecting the effects of diameter on wood decay emphasizes the importance of cross-stem conductivity in Fraxinus americana. Ecosystems, 21(1), 85-97.
  • Ouyang, L., Arnold, R. J., Chen, S., Xie, Y., He, S., et al. (2022). Prediction of the suitable distribution of Eucalyptus grandis in China and its responses to climate change. New Forests, 53(1), 81-99.
  • Ozel, H. B., Abo Aisha, A. E. S., Cetin, M., Sevik, H. & Zeren Cetin, I. (2021). The effects of increased exposure time to UV-B radiation on germination and seedling development of Anatolian black pine seeds. Environmental Monitoring and Assessment, 193, 388.
  • Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., et al. (2018). Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia. Environmental and Experimental Botany, 152, 49-59.
  • Phillips, S. J. & Dudík, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31(2), 161-175.
  • Quinto, L., Navarro-Cerrillo, R. M., Palacios-Rodriguez, G., Ruiz-Gomez, F. & Duque-Lazo, J. (2021). The current situation and future perspectives of Quercus ilex and Pinus halepensis afforestation on agricultural land in Spain under climate change scenarios. New Forests, 52(1), 145-166.
  • Rahman, M., Islam, M., Wernicke, J. & Bräuning, A. (2018). Changes in sensitivity of tree-ring widths to climate in a tropical moist forest tree in Bangladesh. Forests, 9(12), 761.
  • Saha, A., Rahman, S. & Alam, S. (2021). Modeling current and future potential distributions of desert locust Schistocerca gregaria Forskål under climate change scenarios using MaxEnt. Journal of Asia-Pacific Biodiversity, 143, 399-409.
  • Savas, D. S., Sevik, H., Isinkaralar, K., Turkyilmaz, A. & Cetin, M. (2021). The potential of using Cedrus atlantica as a biomonitor in the concentrations of Cr and Mn. Environmental Science and Pollution Research, 28(39), 55446-55453.
  • Sevik, H., Cetin, M., Ozel, H. B., Erbek, A. & Cetin, I. Z. (2021). The effect of climate on leaf micromorphological characteristics in some broad-leaved species. Environment, Development and Sustainability, 23(4), 6395-6407.
  • Sulhan, O. F., Sevik, H. & Isinkaralar, K. (2022). Assessment of Cr and Zn deposition on Picea pungens Engelm. in urban air of Ankara, Türkiye. Environment, Development and Sustainability, 1-20.
  • Tekin, O., Cetin, M., Varol, T., Ozel, H. B., Sevik, H., et al. (2022). Altitudinal migration of species of Fir (Abies spp.) in adaptation to climate change. Water, Air, & Soil Pollution, 233(9), 1-16.
  • Thurm, E. A., Hernandez, L., Baltensweiler, A., Ayan, S., Rasztovits, E., et al. (2018). Alternative tree species under climate warming in managed European forests. Forest Ecology and Management, 430, 485-497.
  • Toczydlowski, A. J., Slesak, R. A., Kolka, R. K. & Venterea, R. T. (2020). Temperature and water-level effects on greenhouse gas fluxes from black ash (Fraxinus nigra) wetland soils in the Upper Great Lakes region, USA. Applied Soil Ecology, 153, 103565.
  • Varol, T., Canturk, U., Cetin, M., Ozel, H. B. & Sevik, H. (2021). Impacts of climate change scenarios on European ash tree (Fraxinus excelsior L.) in Turkey. Forest Ecology and Management. Forest Ecology and Management, 491(2021), 119199.
  • Varol, T., Cetin, M., Ozel, H. B., Sevik, H. & Zeren Cetin, I. (2022a). The effects of climate change scenarios on Carpinus betulus and Carpinus orientalis in Europe. Water, Air and Soil Pollution, 233, 45.
  • Varol, T., Canturk, U., Cetin, M., Ozel, H. B., Sevik, H., et al. (2022b). Identifying the suitable habitats for Anatolian boxwood (Buxus sempervirens L.) for the future regarding the climate change. Theoretical and Applied Climatology, 150(1), 637-647.
  • Walker, A. P., De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Iversen, C. M., et al. (2019). Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment. Nature Communications, 10(1), 1-13.
  • Wu, C. W., Xu, X. X., Zhang, G., Cheng, B. B. & Han, S. (2022). Predicting the potential suitable habitat for tamarix chinensis under climate change based on Cmip6 in China. Applied Ecology and Environmental Research, 204, 2845-2863.
  • Yayla, E. E., Sevik, H. & Isinkaralar, K. (2022). Detection of landscape species as a low-cost biomonitoring study: Cr, Mn, and Zn pollution in an urban air quality. Environmental Monitoring and Assessment, 194(10), 1-10.
  • Yigit, N., Mutevelli, Z., Sevik, H., Onat, S. M., Ozel, H. B., et al. (2021). identification of some fiber characteristics in Rosa sp. and Nerium oleander L. wood grown under different ecological conditions. BioResources, 16(3), 5862-5874.
There are 47 citations in total.

Details

Primary Language English
Subjects Forestry Sciences (Other)
Journal Section Articles
Authors

Nihat Ertürk This is me 0000-0002-7932-9575

Burak Arıcak 0000-0003-0011-7199

Hakan Şevik

Nurcan Yiğit 0000-0002-4655-4434

Early Pub Date March 28, 2024
Publication Date April 3, 2024
Published in Issue Year 2024 Volume: 24 Issue: 1

Cite

APA Ertürk, N., Arıcak, B., Şevik, H., Yiğit, N. (2024). Possible Change in Distribution Areas of Abies in Kastamonu due to Global Climate Change. Kastamonu University Journal of Forestry Faculty, 24(1), 81-91. https://doi.org/10.17475/kastorman.1460616
AMA Ertürk N, Arıcak B, Şevik H, Yiğit N. Possible Change in Distribution Areas of Abies in Kastamonu due to Global Climate Change. Kastamonu University Journal of Forestry Faculty. April 2024;24(1):81-91. doi:10.17475/kastorman.1460616
Chicago Ertürk, Nihat, Burak Arıcak, Hakan Şevik, and Nurcan Yiğit. “Possible Change in Distribution Areas of Abies in Kastamonu Due to Global Climate Change”. Kastamonu University Journal of Forestry Faculty 24, no. 1 (April 2024): 81-91. https://doi.org/10.17475/kastorman.1460616.
EndNote Ertürk N, Arıcak B, Şevik H, Yiğit N (April 1, 2024) Possible Change in Distribution Areas of Abies in Kastamonu due to Global Climate Change. Kastamonu University Journal of Forestry Faculty 24 1 81–91.
IEEE N. Ertürk, B. Arıcak, H. Şevik, and N. Yiğit, “Possible Change in Distribution Areas of Abies in Kastamonu due to Global Climate Change”, Kastamonu University Journal of Forestry Faculty, vol. 24, no. 1, pp. 81–91, 2024, doi: 10.17475/kastorman.1460616.
ISNAD Ertürk, Nihat et al. “Possible Change in Distribution Areas of Abies in Kastamonu Due to Global Climate Change”. Kastamonu University Journal of Forestry Faculty 24/1 (April 2024), 81-91. https://doi.org/10.17475/kastorman.1460616.
JAMA Ertürk N, Arıcak B, Şevik H, Yiğit N. Possible Change in Distribution Areas of Abies in Kastamonu due to Global Climate Change. Kastamonu University Journal of Forestry Faculty. 2024;24:81–91.
MLA Ertürk, Nihat et al. “Possible Change in Distribution Areas of Abies in Kastamonu Due to Global Climate Change”. Kastamonu University Journal of Forestry Faculty, vol. 24, no. 1, 2024, pp. 81-91, doi:10.17475/kastorman.1460616.
Vancouver Ertürk N, Arıcak B, Şevik H, Yiğit N. Possible Change in Distribution Areas of Abies in Kastamonu due to Global Climate Change. Kastamonu University Journal of Forestry Faculty. 2024;24(1):81-9.

14178  14179       14165           14166           14167            14168