BibTex RIS Cite

Ortaokul Matematik Öğretmeni Adaylarının Reel Sayıları Kavrayışlarında Temsillerin Rolü

Year 2016, Volume: 24 Issue: 3, 1149 - 1164, 15.07.2016

Abstract

Bu araştırmanın amacı 158 ortaokul matematik öğretmen adayının reel sayıları kavrayışlarına temsil türlerinin etkisini incelemektir. Şeffaf ve opak temsiller ayrımı kuramsal çerçeve olarak kullanılmıştır. Öğretmen adaylarından rasyonel ve irrasyonel sayıları tanımlamaları, reel sayıları alt kümleri ile birlikte şema ile göstermeleri ve verilen sayıların türlerini (rasyonel ve irrasyonel) belirlemeleri istenmiştir. Daha sonra 10 gönüllü öğretmen adayıyla yarı yapılandırılmış görüşmeler yapılmıştır. Araştırmanın bulguları öğretmen adaylarının sayıların şeffaf temsillerinde bile (örneğin, 1/3) sayının rasyonel ya da irrasyonel olduğunu belirlemede zorlandıklarını göstermiştir. Ayrıca, öğretmen adayları genellikle sayıları rasyonel ya da irrasyonel olduğunu belirlerken temsil biçimlerinden etkilenmiş ve temsile göre sayının türünün değiştiğini düşünmüştür.

References

  • Arcavi, A., Bruckheimer, M., & Ben-Zvi, R., (1987). History of mathematics for teachers: The case of irrational numbers. For the Learning of Mathematics, 7(2), 18–23.
  • Creswell, J. W. (2008). Educational research planning, conducting and evaluating quantitative and qualitative research. International Pearson Merril Prentice Hall.
  • Cuoco, A. (Ed.). (2001). The roles of representation in school mathematics. Reston, VA: National Council of Teachers of Mathematics.
  • Fischbein, E., Jehiam, R., & Cohen, D. (1995). The concept of irrational numbers in high-school students and prospective teachers. Educational Studies in Mathematics, 29, 1, 29-44.
  • Kara, F. ve Delice, A. (2012). Kavram tanımı mı? Yoksa kavram imgeleri mi? İrrasyonel sayıların temsilleri. X.Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi. Niğde, Türkiye.
  • Kaput, J. (1987). Representation systems and mathematics?’ In C. Janvier (Ed.) Problems of representation in the teaching and learning of mathematics (pp. 19-28). Hillsdale, N.J.: Lawrence Erlbaum Associates.
  • Lesh, R., Behr, M., & Post, M. (1987). Rational number relations and proportions. In C. Janvier (Ed.), Prob- lems of representation in the teaching and learning of mathematics (pp. 41–58). Hillsdale, NJ: Erlbaum.
  • MEB, (2013). İlköğretim 7. sınıf matematik ders kitabı. Milli Eğitim Bakanlığı Talim ve Terbiye Kurulu Başkanlığı, Ankara: Devlet Kitapları Müdürlüğü Basım Evi.
  • MEB, (2014). İlköğretim 8. sınıf matematik ders kitabı. Milli Eğitim Bakanlığı Talim ve Terbiye Kurulu Başkanlığı, Ankara: Devlet Kitapları Müdürlüğü Basım Evi.
  • Sinclaire, N., Liljedahl, P., & Zaskis, R. (2006). A coloured wındow on pre-servıce teachers’ conceptions of rational numbers. International Journal of Computers for Mathematical Learning, 11, 177–203.
  • Sirotic, N., & Zazkis, R. (2007a). Irrational numbers: the gap between formal and intuitive know- ledge. Educational Studies in Mathematics, 65, 49–76.
  • Sirotic, N., & Zazkis, R. (2007b). Irrational numbers on the number line – where are they? Inter- national Journal of Mathematical Education in Science and Technology, 38(4), 477-488, DOI: 10.1080/00207390601151828
  • Temel, H. ve Eroğlu, A. O. (2014). İlköğretim 8.sınıf öğrencilerinin sayı kavramlarını anlamlandır- maları üzerine bir çalışma. Kastamonu Eğitim Fakültesi Dergisi, 22(3), 1263-1278.
  • Tirosh, D., Fischbein, E., Graeber, A., & Wilson, J. (1998). Prospective elementary teachers’ con- ceptions of rational numbers, Retrieved January 19th, 2015 from the World Wide Web: http:// jwilson.coe.uga.edu/Texts.Folder/Tirosh/Pros.El.Tchrs.html.
  • Vamvakoussi, X. & Vosniadou, S. (2010). How many decimals are there between two fractions? aspects of secondary school students’ understanding of rational numbers and their notation, Cognition and Instruction, 28(2), 181-209, DOI: 10.1080/07370001003676603.
  • Zazkis, R., & Gadowsky, K. (2001). Attending to transparent features of opaque representations of natural numbers. In A. Cuoco (Ed.), The Role of Representations in Learning Mathematics, Reston, VA: National Council of Teachers of Mathematics.
  • Zazkis, R., & Liljedahl, P. (2004). Understanding primes: The role of representation. Journal for Research in Mathematics Education, 35(3), 164–186.
  • Zazkis, R., & Sirotic, N., (2010). Representing and defining irrational numbers: Exposing the mis- sing link. CBMS Issues in Mathematics Education, 16, 1-27.

The Role Of Representations In Middle School Preservice Teachers’ Conceptions Of Real Numbers

Year 2016, Volume: 24 Issue: 3, 1149 - 1164, 15.07.2016

Abstract

The purpose of this study was to investigate the impact of the representations on 158 middle school preservice teachers’ conceptions of real numbers. The distinction of the transperant and opaque representations was used as a theoretical framework. Participants were asked to define rational and irrational numbers, to show real numbers system in a diagram and to identify the type of the given numbers. Moreover, 10 preservice teachers were interviewed. The results show that participants had difficulty in determining whether a number is rational or irrational even in case of transparent representation (i.e. 1/3). In addition, praticipants’ responses were significantly influenced by the type of representations and some believed that as the representation change, so was number.

References

  • Arcavi, A., Bruckheimer, M., & Ben-Zvi, R., (1987). History of mathematics for teachers: The case of irrational numbers. For the Learning of Mathematics, 7(2), 18–23.
  • Creswell, J. W. (2008). Educational research planning, conducting and evaluating quantitative and qualitative research. International Pearson Merril Prentice Hall.
  • Cuoco, A. (Ed.). (2001). The roles of representation in school mathematics. Reston, VA: National Council of Teachers of Mathematics.
  • Fischbein, E., Jehiam, R., & Cohen, D. (1995). The concept of irrational numbers in high-school students and prospective teachers. Educational Studies in Mathematics, 29, 1, 29-44.
  • Kara, F. ve Delice, A. (2012). Kavram tanımı mı? Yoksa kavram imgeleri mi? İrrasyonel sayıların temsilleri. X.Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi. Niğde, Türkiye.
  • Kaput, J. (1987). Representation systems and mathematics?’ In C. Janvier (Ed.) Problems of representation in the teaching and learning of mathematics (pp. 19-28). Hillsdale, N.J.: Lawrence Erlbaum Associates.
  • Lesh, R., Behr, M., & Post, M. (1987). Rational number relations and proportions. In C. Janvier (Ed.), Prob- lems of representation in the teaching and learning of mathematics (pp. 41–58). Hillsdale, NJ: Erlbaum.
  • MEB, (2013). İlköğretim 7. sınıf matematik ders kitabı. Milli Eğitim Bakanlığı Talim ve Terbiye Kurulu Başkanlığı, Ankara: Devlet Kitapları Müdürlüğü Basım Evi.
  • MEB, (2014). İlköğretim 8. sınıf matematik ders kitabı. Milli Eğitim Bakanlığı Talim ve Terbiye Kurulu Başkanlığı, Ankara: Devlet Kitapları Müdürlüğü Basım Evi.
  • Sinclaire, N., Liljedahl, P., & Zaskis, R. (2006). A coloured wındow on pre-servıce teachers’ conceptions of rational numbers. International Journal of Computers for Mathematical Learning, 11, 177–203.
  • Sirotic, N., & Zazkis, R. (2007a). Irrational numbers: the gap between formal and intuitive know- ledge. Educational Studies in Mathematics, 65, 49–76.
  • Sirotic, N., & Zazkis, R. (2007b). Irrational numbers on the number line – where are they? Inter- national Journal of Mathematical Education in Science and Technology, 38(4), 477-488, DOI: 10.1080/00207390601151828
  • Temel, H. ve Eroğlu, A. O. (2014). İlköğretim 8.sınıf öğrencilerinin sayı kavramlarını anlamlandır- maları üzerine bir çalışma. Kastamonu Eğitim Fakültesi Dergisi, 22(3), 1263-1278.
  • Tirosh, D., Fischbein, E., Graeber, A., & Wilson, J. (1998). Prospective elementary teachers’ con- ceptions of rational numbers, Retrieved January 19th, 2015 from the World Wide Web: http:// jwilson.coe.uga.edu/Texts.Folder/Tirosh/Pros.El.Tchrs.html.
  • Vamvakoussi, X. & Vosniadou, S. (2010). How many decimals are there between two fractions? aspects of secondary school students’ understanding of rational numbers and their notation, Cognition and Instruction, 28(2), 181-209, DOI: 10.1080/07370001003676603.
  • Zazkis, R., & Gadowsky, K. (2001). Attending to transparent features of opaque representations of natural numbers. In A. Cuoco (Ed.), The Role of Representations in Learning Mathematics, Reston, VA: National Council of Teachers of Mathematics.
  • Zazkis, R., & Liljedahl, P. (2004). Understanding primes: The role of representation. Journal for Research in Mathematics Education, 35(3), 164–186.
  • Zazkis, R., & Sirotic, N., (2010). Representing and defining irrational numbers: Exposing the mis- sing link. CBMS Issues in Mathematics Education, 16, 1-27.
There are 18 citations in total.

Details

Other ID JA42MJ66KK
Journal Section Review Article
Authors

Zülbiye Toluk Uçar This is me

Publication Date July 15, 2016
Published in Issue Year 2016 Volume: 24 Issue: 3

Cite

APA Toluk Uçar, Z. (2016). The Role Of Representations In Middle School Preservice Teachers’ Conceptions Of Real Numbers. Kastamonu Education Journal, 24(3), 1149-1164.

10037