Year 2020, Volume 10 , Issue 1, Pages 150 - 161 2020-06-15

Delocalized pi−pi* Orbital Interactions and Stabilization Energies of Phenyltrichlorosilane
Feniltriklorosilanın Delokalize Olmuş pi−pi* Orbital Etkileşimleri ve Stabilizasyon Enerjileri

Nihal KUŞ [1] , Saliha ILICAN [2]


In this study, the optimized Phenyltrichlorosilane (PTS, C6H5SiCl3) using Density Functional Theory (DFT) with B3LYP/6-311++G(d,p) level was studied using natural bond orbital (NBO) theory with NBO 3.1, as integrated in Gaussian09 program. It was determined that there are only pi-pi* transitions for PTS. Donor-acceptor interactions and stabilization energies for these transitions were calculated. The highest transition energy occurred in the orbital interaction of the pi(C1-C6)→pi*(C2-C3) transition and was calculated ca. 99.32 kJ mol-1, which is in a delocolized state. From the NBO calculation results, it was determined that hybridization occurred by settling in p-orbitals of electrons. Natural charges for PTS were calculated and it was determined that the strongest polarization was between Si and C3 atoms. Harmonic Oscillator Measure of Aromaticity (HOMA) index was calculated for the PTS ring.
Bu çalışmada, B3LYP / 6-311 ++ G (d, p) seviyesi ile Yoğunluk Fonksiyonel Teorisi (DFT) kullanılarak optimize edilmiş Feniltriklorosilan (PTS, C6H5SiCl3) molekülü, NBO 3.1 ile Doğal Bağ Orbital (NBO) teorisi ile Gaussian09 programında çalışıldı. PTS için sadece pi-pi* geçişlerinin olduğu belirlenmiştir. Bu geçişlere ait donör-akseptör etkileşimleri ve stabilizasyon enerjileri hesaplandı. En yüksek geçiş enerjisi pi(C1-C6)→pi*(C2-C3) geçişinin orbital etkileşiminde meydana geldi ve delokolize durumda olan bu orbital enerjisi yaklaşık 99.32 kJ mol-1 olarak hesaplandı. Yapılan NBO hesaplamalarının sonuçlarından, hibritleşmenin, elektronların p-orbitallerine yerleşerek meydana geldiği belirlendi. PTS için doğal yükler hesaplandı ve en güçlü polarizasyonun Si ve C3 atomları arasında olduğu tespit edildi. PTS halkası için Harmonik Osilatör Aromatiklik Ölçümü (HOMA) indeksi hesaplandı.
  • Becke, A.D., (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098-3100.
  • Francis A. Carey, Richard J. Sundberg. (2007). Advanced Organic Chemistry: Part A: Structure and Mechanisms. 5th Ed., Springer: USA.
  • Cech, J., Taboryski, R. (2012). Stability of FDTS monolayer coating on aluminum injection molding tools, Applied Surface Science, 259, 538–541.
  • Child, T. F. and Ooij, W. J. van. (1999). Application of silane technology to prevent corrosion of metals and improve paint adhesion, Transactions of the Institute of Metal Finishing, 77(2), 64–70.
  • Dennington, R., Keith, T., and Millam, J. (2009). GaussView, Version 5. Semichem Inc., Shawnee Mission, KS.
  • Fester, G. W., Eckstein, J., Gerlach, D., Wagler, J., Brendler, E., and Kroke, E. (2010). Reactions of hydridochlorosilanes with 2,2′-bipyridine and 1,10-phenanthroline: Complexation versus dismutation and metal-catalyst-free 1,4-hydrosilylation, Inorganic Chemistry, 49(6), 2667–2673.
  • Filtvedt, W. O., Holt, A., Ramachandran, P. A., and Melaaen, M. C. (2012). Chemical vapor deposition of silicon from silane: Review of growthmechanisms and modeling/scaleup of fluidized bed reactors, Solar Energy Materials & Solar Cells, 107, 188–200.
  • Fishman, O. S. (2008). Solar silicon, Advanced Materials and Processes, 166(9), 39–40.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta Jr, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., and Fox, D. J., 2009, Gaussian 09, Revision A.0.2, Gaussian, Inc., Wallingford CT.
  • Glendening, E. D., Faust, R., Streitwieser, A., Vollhardt, K. P. C., and Weinhold, F. (1993). The Role of Delocalization in Benzene, Journal of the American Chemical Society,115, 10952-10957.
  • Kus¸ N., Breda, S., Reva, I., Tasal, E., Ogretir, C., and Fausto, R. (2007). FTIR Spectroscopic and Theoretical Study of the Photochemistry of Matrix-isolated Coumarin, Photochemistry and Photobiology, 83, 1237–1253.
  • Kruszewski, J. and T. M. Krygowski. (1972). Definition of aromaticity basing on harmonic oscillator model. Tetrahedron Letters, 13, 3839–3842.
  • Krygowski, T. M. (1993). Crystallographic studies of intermolecular and intramolecular interactions reflected in aromatic character of p-electron systems. The Journal for Chemical Information and Computer Sciences, 33, 70–78.
  • Krygowski, T. M. and M. Cyranski. (1996). Separation of the energetic and geometric contributions to the aromaticity of p-electron carbocyclics. Tetrahedron, 52, 1713–1722.
  • Lee, C., Yang, W., and Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, 37, 785–789.
  • Lei, Y., Wu, B., Chan, W.-K. E., Zhu, F., and Ong, B. S. (2015). Engineering gate dielectric surface properties for enhanced polymer field-effect transistor performance, Journal of Materials Chemistry C, 3, 12267–12272.
  • Liu, S.-S., Li, H., and Xiao, W.-D. (2015). Sintering effect on crystallite size, hydrogen bond structure andmorphology of the silane-derived silicon powders, Powder Technology, 273, 40–46.
  • Reed, A.E., Curtiss, L.A., and Weinhold, F., (1988). Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews, 88, 899-926.
  • Vorotyntsev, V. M., Mochalov, G. M., and Nipruk, O. V. (2001). Synthesis of monosilane by catalytic disproportionation of trichlorosilane in a reaction-rectification apparatus with recycle, Russian Journal of Applied Chemistry, 74(4), 621–625.
  • Weinhold, F., and Landis, C. R. (2005). Valency and Bonding. A Natural Bond Orbital Donor-Acceptor Perspective. Cambridge University Press: New York.
  • Witucki, G. L. (1993). A silane primer: Chemistry and applications of aIkoxy silanes, Journal of Coatings Technology, 65(822), 57–60.
  • Zhang, P., Duan, J., Chen, G., Li, J., and Wang, W. (2018). Production of polycrystalline silicon from silane pyrolysis: A review of fines formation, Solar Energy, 175, 44–53.
Primary Language en
Subjects Basic Sciences
Journal Section Articles
Authors

Orcid: 0000-0003-4162-7152
Author: Nihal KUŞ (Primary Author)
Institution: Eskişehir Teknik Üniversitesi
Country: Turkey


Orcid: 0000-0003-4064-4364
Author: Saliha ILICAN
Institution: Eskişehir Teknik Üniversitesi
Country: Turkey


Dates

Publication Date : June 15, 2020

Bibtex @research article { kfbd695294, journal = {Karadeniz Fen Bilimleri Dergisi}, issn = {1309-4726}, eissn = {2564-7377}, address = {Giresun Üniversitesi Fen Bilimleri Enstitüsü Güre Yerleşkesi 28200 / Giresun}, publisher = {Giresun University}, year = {2020}, volume = {10}, pages = {150 - 161}, doi = {10.31466/kfbd.695294}, title = {Delocalized pi−pi* Orbital Interactions and Stabilization Energies of Phenyltrichlorosilane}, key = {cite}, author = {Kuş, Nihal and Ilıcan, Saliha} }
APA Kuş, N , Ilıcan, S . (2020). Delocalized pi−pi* Orbital Interactions and Stabilization Energies of Phenyltrichlorosilane . Karadeniz Fen Bilimleri Dergisi , 10 (1) , 150-161 . DOI: 10.31466/kfbd.695294
MLA Kuş, N , Ilıcan, S . "Delocalized pi−pi* Orbital Interactions and Stabilization Energies of Phenyltrichlorosilane" . Karadeniz Fen Bilimleri Dergisi 10 (2020 ): 150-161 <https://dergipark.org.tr/en/pub/kfbd/issue/54926/695294>
Chicago Kuş, N , Ilıcan, S . "Delocalized pi−pi* Orbital Interactions and Stabilization Energies of Phenyltrichlorosilane". Karadeniz Fen Bilimleri Dergisi 10 (2020 ): 150-161
RIS TY - JOUR T1 - Delocalized pi−pi* Orbital Interactions and Stabilization Energies of Phenyltrichlorosilane AU - Nihal Kuş , Saliha Ilıcan Y1 - 2020 PY - 2020 N1 - doi: 10.31466/kfbd.695294 DO - 10.31466/kfbd.695294 T2 - Karadeniz Fen Bilimleri Dergisi JF - Journal JO - JOR SP - 150 EP - 161 VL - 10 IS - 1 SN - 1309-4726-2564-7377 M3 - doi: 10.31466/kfbd.695294 UR - https://doi.org/10.31466/kfbd.695294 Y2 - 2020 ER -
EndNote %0 Karadeniz Fen Bilimleri Dergisi Delocalized pi−pi* Orbital Interactions and Stabilization Energies of Phenyltrichlorosilane %A Nihal Kuş , Saliha Ilıcan %T Delocalized pi−pi* Orbital Interactions and Stabilization Energies of Phenyltrichlorosilane %D 2020 %J Karadeniz Fen Bilimleri Dergisi %P 1309-4726-2564-7377 %V 10 %N 1 %R doi: 10.31466/kfbd.695294 %U 10.31466/kfbd.695294
ISNAD Kuş, Nihal , Ilıcan, Saliha . "Delocalized pi−pi* Orbital Interactions and Stabilization Energies of Phenyltrichlorosilane". Karadeniz Fen Bilimleri Dergisi 10 / 1 (June 2020): 150-161 . https://doi.org/10.31466/kfbd.695294
AMA Kuş N , Ilıcan S . Delocalized pi−pi* Orbital Interactions and Stabilization Energies of Phenyltrichlorosilane. KFBD. 2020; 10(1): 150-161.
Vancouver Kuş N , Ilıcan S . Delocalized pi−pi* Orbital Interactions and Stabilization Energies of Phenyltrichlorosilane. Karadeniz Fen Bilimleri Dergisi. 2020; 10(1): 150-161.