Research Article
BibTex RIS Cite

Adaçayının PEG ile İndüklenen Kuraklık Stresine Antioksidatif Yanıtları

Year 2022, Volume: 12 Issue: 1, 390 - 397, 15.06.2022
https://doi.org/10.31466/kfbd.1080095

Abstract

Bu çalışma, polietilen glikol (PEG) ile indüklenen iki kuraklık uygulamasının (-0.4 ve -0.8 MPa) adaçayı (Salvia officinalis L.) bitkisi üzerindeki etkisini belirlemek amacıyla yapılmıştır. Yirmi beş günlük çelikler yedi gün boyunca kuraklık uygulamalarına maruz bırakılmıştır. Zar hasarı ve su kaybı, kuraklığın şiddeti ile kademeli olarak artmıştır. Zar bütünlüğündeki ve su içeriğindeki azalmalar adaçayının kuraklıktan etkilendiğini gösterirken, artan flavonoid ve antioksidan enzim aktiviteleri bile bu etkiyi azaltamamıştır. Su potansiyeli koşullarının azalmasıyla yaprakların H2O2 içeriğinin artması, kuraklığın neden olduğu oksidatif stresin göstergesidir. Yüksek seviyelerdeki SOD ve POD aktiviteleri, enzimlerin H2O2'nin uzaklaştırılmasında rol oynadığını göstermiştir. Adaçayı, kuraklığa dayanma toleransını başarıyla artırmıştır.

References

  • Arslan Ö., Nalçaiyi Balkan, A.S., Çulha Erdal, Ş., Pekcan V., Kaya, Y., Çiçek N., and Ekmekçi, Y. (2020). Analysis of drought response of sunflower inbred lines by chlorophyll a fluorescence induction kinetics. Photosynthetica, 58, 163-172.
  • Basal, O., Szabó, A., and Veres, S. (2020). Physiology of soybean as affected by PEG-induced drought stress. Current Plant Biology, 22, 100135.
  • Basu, S., Roychoudhury, A., Saha, P. P., and Sengupta, D. N. (2010). Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regulation, 60, 51-59.
  • Bettaieb, I., Zakhama, N., Wannes, W. A., Kchouk, M. E., and Marzouk, B. (2009). Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Scientia Horticulturae, 120, 271-275.
  • Beyer, W. F. and Fridovich, I. (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry, 161, 559-566.
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
  • Chance, B. and Maehly, A. C. (1955). Assay of catalases and peroxidases. Methods in Enzymology, 2, 764-817.
  • Çiçek N., Arslan Ö., Çulha-Erdal Ş., Eyidoğan, F., and Ekmekçi, Y. (2015). Are the photosynthetic performance indexes and the drought factor index satisfactory selection criterion for stress?. Fresenius Environmental Bulletin, 24, 4190-4198.
  • Çulha Erdal, Ş., Eyidoğan, F., and Ekmekçi, Y. (2021). Comparative physiological and proteomic analysis of cultivated and wild safflower response to drought stress and re-watering. Physiology and Molecular Biology of Plants, 27, 281-295.
  • Esterbauer, H. and Cheeseman, K.H. (1990). Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods in Enzymology, 186, 407-431.
  • Farghaly, F.A., Salam, H. K. H., Hamada, A. M. and Radi, A. A. (2021). The role of benzoic acid, gallic acid and salicylic acid in protecting tomato callus cells from excessive boron stress. Scientia Horticulturae, 278, 109867.
  • Farooq, M., Wahid, A., Fujita, D. and Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy of Sustainable Development, 29, 185-212.
  • Farrant, J. M. (2000). A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species. Plant Ecology, 151, 29-39.
  • Hajihashemi, S. and Sofo, A. (2018). The effect of polyethylene glycol-induced drought stress on photosynthesis, carbohydrates and cell membrane in Stevia rebaudiana grown in greenhouse. Acta Physiologiae Plantarum, 40, 142. https://doi.org/10.1007/s11738-018-2722-8
  • Hendawy, S. F. and Khalid, Kh. A. (2005). Response of sage (Salvia officinalis L.) plants to zinc application under different salinity levels. Journal of Applied Sciences Research, 1, 147-155.
  • Hoagland, D. R. and Arnon, D. I. (1950). The water culture method for growing plants without soil. California Agricultural Experiment Station, 347, 1-39.
  • Kaya, Y., Nalçaiyi Balkan, A. S., Erdal Culha, Ş., Arslan, Ö., Çiçek, N., Pekcan, V., Yılmaz, M. İ., Evci, G., and Ekmekçi, Y. (2016). Evaluation of male inbred lines of sunflower (Helianthus annuus L.) for resistance to drought via chlorophyll fluorescence. Turkish Journal of Field Crops, 21(2), 162-17.
  • Lawlor, D. W. (2010). Absorption of polyethylene glycols by plants and their effects on plant growth. New Phytologist, 69, 501-513.
  • Lu, Y. and Foo, L. Y. (2001). Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chemistry, 75, 197-202.
  • Mirecki, R. M. and Teramura, A. H. (1984). Effects of ultraviolet-B irradiance on soybean V, The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant Physiology, 74, 475-480.
  • Pekcan, V., Yılmaz, M. İ., Evci, G., Cil, A. N., Sahin, V., Gunduz, O., Koc, H., and Kaya, Y. (2021). Oil content determination on sunflower seeds in drought conditions. Journal of Food Processing and Preservation, e15481. doi: 10.1111/jfpp.15481
  • Pütter, J. (1974). Peroxidases, in: Bergmeyer HU (ed.). Methods of Enzymatic Analysis, Vol. II, Academic Press, New York, pp 685– 690
  • Redmann, R. E., Haraldson, J. and Gusta, L. V. (1986). Leakage of UV-absorbing substances as a measure of salt injury in leaf tissue of woody species. Physiologia Plantarum, 67, 87-91.
  • Soltanbeigi, A., Yıldız, M., Dıraman, H., Terzi H., Sakartepe, E. and Yıldız, E. (2021). Growth responses and essential oil profile of Salvia officinalis L. Influenced by water deficit and various nutrient sources in the greenhouse. Saudi Journal of Biological Sciences, 28, 7327-7335.
  • Taarit, M. B., Msaada, K., Hosni, K., and Marzouk, B. (2010). Changes in fatty acid and essential oil of sage (Salvia officinalis L.) leaves under NaCl stress. Food Chemistry, 119, 951-956.
  • Turan, Ö. and Ekmekçi, Y., (2011). Activities of photosystem II and antioxidant enzymes in chickpea (Cicer arietinum L.) cultivars exposed to chilling temperatures. Acta Physiologiae Plantarum, 33, 67-78.
  • Zhang, C., Shi, S., Wang, B. and Zhao, J. (2018). Physiological and biochemical changes in different drought-tolerant alfalfa (Medicago sativa L.) varieties under PEG-induced drought stress. Acta Physiologiae Plantarum, 40, 25.

Antioxidative Responses of Sage to PEG-induced Drought Stress

Year 2022, Volume: 12 Issue: 1, 390 - 397, 15.06.2022
https://doi.org/10.31466/kfbd.1080095

Abstract

The current study was conducted to find out the effect of two polyethylene glycol (PEG) induced drought treatments (-0.4 and -0.8 MPa) on sage (Salvia officinalis L.). Twenty five-day old cuttings were exposed to drought treatments for seven days. Membrane damage and water loss were gradually increased with the severity of drought. While reductions in membrane integrity and water content showed that sage was affected by drought, even increased flavonoid and antioxidant enzyme activities could not alleviate this effect. H2O2 content of leaves increased with decreasing water potential conditions, indication an oxidative stress caused by drought. Elevated levels of SOD and POD activities indicated that the enzymes were involved in scavenging of H2O2. Sage was successfully increased the tolerance to withstand to drought. 

References

  • Arslan Ö., Nalçaiyi Balkan, A.S., Çulha Erdal, Ş., Pekcan V., Kaya, Y., Çiçek N., and Ekmekçi, Y. (2020). Analysis of drought response of sunflower inbred lines by chlorophyll a fluorescence induction kinetics. Photosynthetica, 58, 163-172.
  • Basal, O., Szabó, A., and Veres, S. (2020). Physiology of soybean as affected by PEG-induced drought stress. Current Plant Biology, 22, 100135.
  • Basu, S., Roychoudhury, A., Saha, P. P., and Sengupta, D. N. (2010). Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regulation, 60, 51-59.
  • Bettaieb, I., Zakhama, N., Wannes, W. A., Kchouk, M. E., and Marzouk, B. (2009). Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Scientia Horticulturae, 120, 271-275.
  • Beyer, W. F. and Fridovich, I. (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry, 161, 559-566.
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
  • Chance, B. and Maehly, A. C. (1955). Assay of catalases and peroxidases. Methods in Enzymology, 2, 764-817.
  • Çiçek N., Arslan Ö., Çulha-Erdal Ş., Eyidoğan, F., and Ekmekçi, Y. (2015). Are the photosynthetic performance indexes and the drought factor index satisfactory selection criterion for stress?. Fresenius Environmental Bulletin, 24, 4190-4198.
  • Çulha Erdal, Ş., Eyidoğan, F., and Ekmekçi, Y. (2021). Comparative physiological and proteomic analysis of cultivated and wild safflower response to drought stress and re-watering. Physiology and Molecular Biology of Plants, 27, 281-295.
  • Esterbauer, H. and Cheeseman, K.H. (1990). Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods in Enzymology, 186, 407-431.
  • Farghaly, F.A., Salam, H. K. H., Hamada, A. M. and Radi, A. A. (2021). The role of benzoic acid, gallic acid and salicylic acid in protecting tomato callus cells from excessive boron stress. Scientia Horticulturae, 278, 109867.
  • Farooq, M., Wahid, A., Fujita, D. and Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy of Sustainable Development, 29, 185-212.
  • Farrant, J. M. (2000). A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species. Plant Ecology, 151, 29-39.
  • Hajihashemi, S. and Sofo, A. (2018). The effect of polyethylene glycol-induced drought stress on photosynthesis, carbohydrates and cell membrane in Stevia rebaudiana grown in greenhouse. Acta Physiologiae Plantarum, 40, 142. https://doi.org/10.1007/s11738-018-2722-8
  • Hendawy, S. F. and Khalid, Kh. A. (2005). Response of sage (Salvia officinalis L.) plants to zinc application under different salinity levels. Journal of Applied Sciences Research, 1, 147-155.
  • Hoagland, D. R. and Arnon, D. I. (1950). The water culture method for growing plants without soil. California Agricultural Experiment Station, 347, 1-39.
  • Kaya, Y., Nalçaiyi Balkan, A. S., Erdal Culha, Ş., Arslan, Ö., Çiçek, N., Pekcan, V., Yılmaz, M. İ., Evci, G., and Ekmekçi, Y. (2016). Evaluation of male inbred lines of sunflower (Helianthus annuus L.) for resistance to drought via chlorophyll fluorescence. Turkish Journal of Field Crops, 21(2), 162-17.
  • Lawlor, D. W. (2010). Absorption of polyethylene glycols by plants and their effects on plant growth. New Phytologist, 69, 501-513.
  • Lu, Y. and Foo, L. Y. (2001). Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chemistry, 75, 197-202.
  • Mirecki, R. M. and Teramura, A. H. (1984). Effects of ultraviolet-B irradiance on soybean V, The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant Physiology, 74, 475-480.
  • Pekcan, V., Yılmaz, M. İ., Evci, G., Cil, A. N., Sahin, V., Gunduz, O., Koc, H., and Kaya, Y. (2021). Oil content determination on sunflower seeds in drought conditions. Journal of Food Processing and Preservation, e15481. doi: 10.1111/jfpp.15481
  • Pütter, J. (1974). Peroxidases, in: Bergmeyer HU (ed.). Methods of Enzymatic Analysis, Vol. II, Academic Press, New York, pp 685– 690
  • Redmann, R. E., Haraldson, J. and Gusta, L. V. (1986). Leakage of UV-absorbing substances as a measure of salt injury in leaf tissue of woody species. Physiologia Plantarum, 67, 87-91.
  • Soltanbeigi, A., Yıldız, M., Dıraman, H., Terzi H., Sakartepe, E. and Yıldız, E. (2021). Growth responses and essential oil profile of Salvia officinalis L. Influenced by water deficit and various nutrient sources in the greenhouse. Saudi Journal of Biological Sciences, 28, 7327-7335.
  • Taarit, M. B., Msaada, K., Hosni, K., and Marzouk, B. (2010). Changes in fatty acid and essential oil of sage (Salvia officinalis L.) leaves under NaCl stress. Food Chemistry, 119, 951-956.
  • Turan, Ö. and Ekmekçi, Y., (2011). Activities of photosystem II and antioxidant enzymes in chickpea (Cicer arietinum L.) cultivars exposed to chilling temperatures. Acta Physiologiae Plantarum, 33, 67-78.
  • Zhang, C., Shi, S., Wang, B. and Zhao, J. (2018). Physiological and biochemical changes in different drought-tolerant alfalfa (Medicago sativa L.) varieties under PEG-induced drought stress. Acta Physiologiae Plantarum, 40, 25.
There are 27 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Özlem Arslan 0000-0001-7574-4811

Early Pub Date June 15, 2022
Publication Date June 15, 2022
Published in Issue Year 2022 Volume: 12 Issue: 1

Cite

APA Arslan, Ö. (2022). Antioxidative Responses of Sage to PEG-induced Drought Stress. Karadeniz Fen Bilimleri Dergisi, 12(1), 390-397. https://doi.org/10.31466/kfbd.1080095