Research Article
BibTex RIS Cite

Kanser Tedavisinde Mikrodalga Ablasyon İçin Optimum Parametrelerin Belirlenmesi

Year 2023, Volume: 13 Issue: 4, 1427 - 1450, 15.12.2023
https://doi.org/10.31466/kfbd.1292483

Abstract

Son yıllarda kanserli hücrelerin ve tümörlerin tedavisinde kullanılan mikrodalga ablasyon, mikrodalgalar tarafından üretilen ısının kullanıldığı invaziv bir termal terapi türüdür. Bu çalışmada ablasyon tedavisinde kontrolün sağlanması için doku hasarı boyutlarının teorik olarak elde edilmesi hedeflenmiştir. Doku özellikleri, frekans, çıkış gücü, uygulama süresi parametrelerinin etkisinin analiz edilmesi ve bunlar arasındaki ilişkinin belirlenmesi amaçlanmıştır. Çalışmada karaciğer, akciğer ve böbrek dokularına uygulanan elektromanyetik alan maruziyeti COMSOL Multiphysics programı ile modellenmiş, numerik analiz yöntemi kullanılarak özgül soğurma oranı (SAR), sıcaklık dağılımı ve dokular üzerindeki hasar düzeyi hesaplanmıştır. Sıcaklık gradyanını elde etmek için biyo-ısı ve elektromanyetik denklemler ve üç boyutlu sonlu elemanlar yöntemi (FEM) kullanılmıştır. Sayısal analiz sonuçları sıcaklık dağılımı, SAR ve lezyon boyutları olarak verilmiştir. Dokuya ait yapısal farklılıkların önemli bir etken olduğu ve ablasyon bölgesi boyutlarının elde edilen sıcaklığın yanı sıra frekans, giriş gücü ve uygulama süresiyle doğru orantılı olarak arttığı bulunmuştur. İstenilen şekil ve boyutta ablasyon elde edilmesi için parametrelerin optimizasyonu gereklidir. Simülasyon çıktılarında 2450 MHz frekans ve 10 W çıkış gücündeki 10 dakikalık ablasyondan sonra karaciğer, akciğer ve böbrek için yaklaşık pıhtılaşma uzunlukları sırasıyla 4,5 cm, 4 cm ve 2,5 cm; pıhtılaşma çapları ise sırasıyla 1,5 cm, 0,8 cm ve 0,6 cm olarak belirlenmiştir.

References

  • Akçalar, Yıldırım, S. (2013). Kolorektal Kanser Metastazlarının Tedavisinde Radyofrekans Ablasyon: Uzun Dönem Klinik Sonuçları. Tıpta Uzmanlık Tezi, Hacettepe Üniversitesi Tıp Fakültesi, Ankara, Türkiye.
  • Andreano, A. et al. (2010). Microwaves create larger ablations than radiofrequency when controlled for power in ex vivo tissue. Medical physics, 37(6Part1), 2967-2973.
  • Bertram, J. M., Yang, D., Converse, M. C., Webster, J. G., & Mahvi, D. M. (2006). Antenna design for microwave hepatic ablation using an axisymmetric electromagnetic model. Biomedical engineering online, 5, 1-9.
  • Brace, C. L. (2009). Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences?. Current problems in diagnostic radiology, 38(3), 135-143.
  • Brace, C. L. (2010). Microwave tissue ablation: biophysics, technology, and applications. Crit Rev Biomed Eng., 38(1), 65-78.
  • Brace, C. L. (2011). Thermal tumor ablation in clinical use. IEEE pulse, 2(5), 28-38.
  • Curto, S. et al. (2015). Microwave ablation at 915 MHz vs 2.45 GHz: A theoretical and experimental investigation. Medical physics, 42(11), 6152-6161.
  • Elabbasi, N. and Hancock. M. (2016). Radio Frequency Tissue Ablation Simulation with COMSOL Multiphysics® Software [Online document]. Web site: https://www.comsol.com/paper/radio-frequency-tissue-ablation-simulation-with-comsol-multiphysics-software-40522
  • Gas, P. (2012). Tissue temperature distributions for different frequencies derived from interstitial microwave hyperthermia. Przegląd Elektrotechniczny, 88(12b), 131-134.
  • He, X. et al. (2004). Investigation of the thermal and tissue injury behaviour in microwave thermal therapy using a porcine kidney model. International Journal of Hyperthermia, 20(6), 567-593.
  • Hernández-Jácquez, J. I., Cepeda-Rubio, M. F. J., Guerrero-López, G. D., Vera-Hernández, A., Leija-Salas, L., Valdés-Perezgasga, F., & Flores-García, F. (2020). In-Silico study of microwave ablation applicators of different size for breast cancer treatment. Ingeniería, investigación y tecnología, 21(3).
  • Ibitoye, A. Z., Orotoye, T., Nwoye, E. O., & Aweda, M. A. (2018). Analysis of efficiency of different antennas for microwave ablation using simulation and experimental methods. Egyptian Journal of Basic and Applied Sciences, 5(1), 24-30.
  • Jin, S., & Wang, Q. (2022). A Study of Microwave Ablation With Hollow Antenna. IEEE Access, 10, 46136-46143.
  • Keangin, P., Rattanadecho, P., Wessapan, T. (2011). An analysis of heat transfer in liver tissue during microwave ablation using single and double slot anten. International Communications in Heat and Mass Transfer, ICHMT-02354, 1-10.
  • Li, Z. et al. (2011). Improved hyperthermia treatment control using SAR/temperature simulation and PRFS magnetic resonance thermal imaging. International Journal of Hyperthermia, 27(1), 86-99.
  • Paruch, M. (2019). Mathematical modeling of breast tumor destruction using fast heating during radiofrequency ablation. Materials, 13(1), 136.
  • Peng, L. Ruan, C.L. (2011). UWB band-notched monopole antenna design using electromagnetic-bandgap structures. IEEE Transactions on Microwave Theory And Techniques, 59(4), 1074-1081.
  • Prakash, P., Converse, M. C., Webster, J. G., & Mahvi, D. M. (2008, July). Design optimization of coaxial antennas for hepatic microwave ablation using genetic algorithms. In 2008 IEEE Antennas and Propagation Society International Symposium (pp. 1-4). IEEE.
  • Prakash, P. (2010). Theoretical modeling for hepatic microwave ablation. The open biomedical engineering journal, 4, 27-38.
  • Radmilović-Radjenović, M. et al. (2021). Finite element analysis of the microwave ablation method for enhanced lung cancer treatment. Cancers, 13(14), 3500.
  • Radmilović-Radjenović, M. et al. (2022-a). An Analysis of Microwave Ablation Parameters for Treatment of Liver Tumors from the 3D-IRCADb-01 Database. Biomedicines, 10(7), 1569.
  • Radmilović-Radjenović, M. et al. (2022-b). Computational Modeling of Microwave Tumor Ablation. Bioengineering, 9(11), 656.
  • Rattanadecho, P., & Keangin, P. (2013). Numerical study of heat transfer and blood flow in two-layered porous liver tissue during microwave ablation process using single and double slot antenna. International Journal of heat and mass Transfer, 58(1-2), 457-470.
  • Rossmann, C. and Haemmerich, D. (2014). Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures. Critical Reviews™ in Biomedical Engineering, 42(6), 467-92.
  • Saito, K. et al. (2001). Estimation of SAR distribution of a tip-split array applicator for microwave coagulation therapy using the finite element method. IEICE transactions on electronics, 84(7), 948-954.
  • Sawarbandhe, M. D., Naik, S. B., Satpute, V. R., & Sinha, S. (2016, August). Coaxial antenna for microwave ablation. In 2016 IEEE Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER) (pp. 119-122). IEEE.
  • Selmi, M., Bin Dukhyil, A. A., & Belmabrouk, H. (2019). Numerical analysis of human cancer therapy using microwave ablation. Applied Sciences, 10(1), 211.
  • Sevgi, L. (2003). Complex electromagnetic problems and numerical simulation approaches. John Wiley & Sons.
  • Sharma, S. (2016). Multiphysics Design Optimization of Microwave Ablation Antennas. M.S. thesis, University of Toronto, Canada.
  • Singh, S., Repaka, R., & Al‐Jumaily, A. (2019). Sensitivity analysis of critical parameters affecting the efficacy of microwave ablation using Taguchi method. International Journal of RF and Microwave Computer‐Aided Engineering, 29(4), e21581.
  • Sullivan, D. (1990). Three-dimensional computer simulation in deep regional hyperthermia using the finite-difference time-domain method. IEEE Transactions on Microwave Theory And Technique, 38(2), 204-211.
  • Sun, J. Zhang, A. Xu, L.X. (2008). Evaluation of alternate cooling and heating for tumor treatment. International Journal of Heat And Mass Transfer, 51, 5478–5485.
  • Tabuse, K. (1979). A new operative procedure of hepatic surgery using a microwave tissue coagulator. Nihon Geka Hokan, 48(2), 160-172.
  • Tabuse, K. et al. (1985). Microwave surgery: Hepatectomy using a microwave tissue coagulator. World Journal of Surgery, 9(1), 136-143.
  • Tehrani, M. H., Soltani, M., Kashkooli, F. M., & Raahemifar, K. (2020). Use of microwave ablation for thermal treatment of solid tumors with different shapes and sizes—A computational approach. PLoS One, 15(6), e0233219.
  • Towoju, O., Ishola, F., Sanni, T., & Olatunji, O. (2019, December). Investigation of influence of coaxial antenna slot positioning on thermal efficiency in microwave ablation using COMSOL. In Journal of Physics: Conference Series (Vol. 1378, No. 3, p. 032066). IOP Publishing.
  • Us, Barlaz, S. (2013). RF-Mikrodalga Frekans Aralığındaki Elektromanyetik Dalgaların Biyolojik Dokular Üzerine Etkisinin FDTD Simülasyonu. Doktora Tezi, İnönü Üniversitesi Fen Bilimleri Enstitüsü, Malatya, Türkiye.
  • Vogl, T.J., Naguib, N.N.N., Lehnert, T., Nour-Eldin, A. (2011). Radiofrequency, microwave and laser ablation of pulmonary neoplasms: Clinical studies and technical considerations. European Journal of Radiology, 77, 346–357.
  • Volakis, J. L., Chatterjee, A., Kempel, L. C. (1998). Finite Element Method Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications, Wiley-IEEE Press, 368 p.
  • Yalçın, O. (2019). Kanser Tedavisi İçin Kullanılan Hipertermi Yönteminin Dokulara Olan Isıl Etkisinin Tomografik Görüntüler Üzerinden 3-Boyutlu Modelleme ile İncelenmesi. Yüksek Lisans Tezi, Mersin Üniversitesi Fen Bilimleri Enstitüsü Elektrik-Elektronik Mühendisliği Ana Bilim Dalı, Mersin, Türkiye.
  • Yang, D., & Cao, M. (2020). Effect of changes in lung physical properties on microwave ablation zone during respiration. Biomedical Engineering Letters, 10, 285-298.

Determination of Optimum Parameters of Microwave Ablation in Cancer Treatment

Year 2023, Volume: 13 Issue: 4, 1427 - 1450, 15.12.2023
https://doi.org/10.31466/kfbd.1292483

Abstract

Microwave ablation, which has been used in recent years to treat cancerous cells and tumors, is a type of invasive thermal therapy that uses heat produced by microwaves. In this study, it was aimed to theoretically obtain the extent of tissue damage in order to ensure control in ablation treatment. It was aimed to analyze the effects of tissue properties, frequency, output power, application time parameters and to determine the relationship between them. In the study, electromagnetic field exposure applied to liver, lung and kidney tissues was modeled with the COMSOL Multiphysics program, and the specific absorption rate (SAR), temperature distribution and damage level on the tissues were calculated using the numerical analysis method. Bio-thermal and electromagnetic equations and three-dimensional finite element method (FEM) were used to obtain the temperature gradient. Numerical analysis results are given as temperature distribution, SAR and lesion sizes. It has been found that structural differences of the tissue are an important factor and the ablation zone sizes increase in direct proportion to the achieved temperature as well as frequency, input power and application time. Optimization of parameters is necessary to obtain ablation of the desired shape and size. In the simulation outputs, after 10 minutes of ablation at 2450 MHz frequency and 10 W output power, the approximate coagulation lengths for liver, lung, and kidney were 4.5 cm, 4 cm, and 2.5 cm, respectively; The coagulation diameters were determined as 1.5 cm, 0.8 cm and 0.6 cm, respectively.

References

  • Akçalar, Yıldırım, S. (2013). Kolorektal Kanser Metastazlarının Tedavisinde Radyofrekans Ablasyon: Uzun Dönem Klinik Sonuçları. Tıpta Uzmanlık Tezi, Hacettepe Üniversitesi Tıp Fakültesi, Ankara, Türkiye.
  • Andreano, A. et al. (2010). Microwaves create larger ablations than radiofrequency when controlled for power in ex vivo tissue. Medical physics, 37(6Part1), 2967-2973.
  • Bertram, J. M., Yang, D., Converse, M. C., Webster, J. G., & Mahvi, D. M. (2006). Antenna design for microwave hepatic ablation using an axisymmetric electromagnetic model. Biomedical engineering online, 5, 1-9.
  • Brace, C. L. (2009). Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences?. Current problems in diagnostic radiology, 38(3), 135-143.
  • Brace, C. L. (2010). Microwave tissue ablation: biophysics, technology, and applications. Crit Rev Biomed Eng., 38(1), 65-78.
  • Brace, C. L. (2011). Thermal tumor ablation in clinical use. IEEE pulse, 2(5), 28-38.
  • Curto, S. et al. (2015). Microwave ablation at 915 MHz vs 2.45 GHz: A theoretical and experimental investigation. Medical physics, 42(11), 6152-6161.
  • Elabbasi, N. and Hancock. M. (2016). Radio Frequency Tissue Ablation Simulation with COMSOL Multiphysics® Software [Online document]. Web site: https://www.comsol.com/paper/radio-frequency-tissue-ablation-simulation-with-comsol-multiphysics-software-40522
  • Gas, P. (2012). Tissue temperature distributions for different frequencies derived from interstitial microwave hyperthermia. Przegląd Elektrotechniczny, 88(12b), 131-134.
  • He, X. et al. (2004). Investigation of the thermal and tissue injury behaviour in microwave thermal therapy using a porcine kidney model. International Journal of Hyperthermia, 20(6), 567-593.
  • Hernández-Jácquez, J. I., Cepeda-Rubio, M. F. J., Guerrero-López, G. D., Vera-Hernández, A., Leija-Salas, L., Valdés-Perezgasga, F., & Flores-García, F. (2020). In-Silico study of microwave ablation applicators of different size for breast cancer treatment. Ingeniería, investigación y tecnología, 21(3).
  • Ibitoye, A. Z., Orotoye, T., Nwoye, E. O., & Aweda, M. A. (2018). Analysis of efficiency of different antennas for microwave ablation using simulation and experimental methods. Egyptian Journal of Basic and Applied Sciences, 5(1), 24-30.
  • Jin, S., & Wang, Q. (2022). A Study of Microwave Ablation With Hollow Antenna. IEEE Access, 10, 46136-46143.
  • Keangin, P., Rattanadecho, P., Wessapan, T. (2011). An analysis of heat transfer in liver tissue during microwave ablation using single and double slot anten. International Communications in Heat and Mass Transfer, ICHMT-02354, 1-10.
  • Li, Z. et al. (2011). Improved hyperthermia treatment control using SAR/temperature simulation and PRFS magnetic resonance thermal imaging. International Journal of Hyperthermia, 27(1), 86-99.
  • Paruch, M. (2019). Mathematical modeling of breast tumor destruction using fast heating during radiofrequency ablation. Materials, 13(1), 136.
  • Peng, L. Ruan, C.L. (2011). UWB band-notched monopole antenna design using electromagnetic-bandgap structures. IEEE Transactions on Microwave Theory And Techniques, 59(4), 1074-1081.
  • Prakash, P., Converse, M. C., Webster, J. G., & Mahvi, D. M. (2008, July). Design optimization of coaxial antennas for hepatic microwave ablation using genetic algorithms. In 2008 IEEE Antennas and Propagation Society International Symposium (pp. 1-4). IEEE.
  • Prakash, P. (2010). Theoretical modeling for hepatic microwave ablation. The open biomedical engineering journal, 4, 27-38.
  • Radmilović-Radjenović, M. et al. (2021). Finite element analysis of the microwave ablation method for enhanced lung cancer treatment. Cancers, 13(14), 3500.
  • Radmilović-Radjenović, M. et al. (2022-a). An Analysis of Microwave Ablation Parameters for Treatment of Liver Tumors from the 3D-IRCADb-01 Database. Biomedicines, 10(7), 1569.
  • Radmilović-Radjenović, M. et al. (2022-b). Computational Modeling of Microwave Tumor Ablation. Bioengineering, 9(11), 656.
  • Rattanadecho, P., & Keangin, P. (2013). Numerical study of heat transfer and blood flow in two-layered porous liver tissue during microwave ablation process using single and double slot antenna. International Journal of heat and mass Transfer, 58(1-2), 457-470.
  • Rossmann, C. and Haemmerich, D. (2014). Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures. Critical Reviews™ in Biomedical Engineering, 42(6), 467-92.
  • Saito, K. et al. (2001). Estimation of SAR distribution of a tip-split array applicator for microwave coagulation therapy using the finite element method. IEICE transactions on electronics, 84(7), 948-954.
  • Sawarbandhe, M. D., Naik, S. B., Satpute, V. R., & Sinha, S. (2016, August). Coaxial antenna for microwave ablation. In 2016 IEEE Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER) (pp. 119-122). IEEE.
  • Selmi, M., Bin Dukhyil, A. A., & Belmabrouk, H. (2019). Numerical analysis of human cancer therapy using microwave ablation. Applied Sciences, 10(1), 211.
  • Sevgi, L. (2003). Complex electromagnetic problems and numerical simulation approaches. John Wiley & Sons.
  • Sharma, S. (2016). Multiphysics Design Optimization of Microwave Ablation Antennas. M.S. thesis, University of Toronto, Canada.
  • Singh, S., Repaka, R., & Al‐Jumaily, A. (2019). Sensitivity analysis of critical parameters affecting the efficacy of microwave ablation using Taguchi method. International Journal of RF and Microwave Computer‐Aided Engineering, 29(4), e21581.
  • Sullivan, D. (1990). Three-dimensional computer simulation in deep regional hyperthermia using the finite-difference time-domain method. IEEE Transactions on Microwave Theory And Technique, 38(2), 204-211.
  • Sun, J. Zhang, A. Xu, L.X. (2008). Evaluation of alternate cooling and heating for tumor treatment. International Journal of Heat And Mass Transfer, 51, 5478–5485.
  • Tabuse, K. (1979). A new operative procedure of hepatic surgery using a microwave tissue coagulator. Nihon Geka Hokan, 48(2), 160-172.
  • Tabuse, K. et al. (1985). Microwave surgery: Hepatectomy using a microwave tissue coagulator. World Journal of Surgery, 9(1), 136-143.
  • Tehrani, M. H., Soltani, M., Kashkooli, F. M., & Raahemifar, K. (2020). Use of microwave ablation for thermal treatment of solid tumors with different shapes and sizes—A computational approach. PLoS One, 15(6), e0233219.
  • Towoju, O., Ishola, F., Sanni, T., & Olatunji, O. (2019, December). Investigation of influence of coaxial antenna slot positioning on thermal efficiency in microwave ablation using COMSOL. In Journal of Physics: Conference Series (Vol. 1378, No. 3, p. 032066). IOP Publishing.
  • Us, Barlaz, S. (2013). RF-Mikrodalga Frekans Aralığındaki Elektromanyetik Dalgaların Biyolojik Dokular Üzerine Etkisinin FDTD Simülasyonu. Doktora Tezi, İnönü Üniversitesi Fen Bilimleri Enstitüsü, Malatya, Türkiye.
  • Vogl, T.J., Naguib, N.N.N., Lehnert, T., Nour-Eldin, A. (2011). Radiofrequency, microwave and laser ablation of pulmonary neoplasms: Clinical studies and technical considerations. European Journal of Radiology, 77, 346–357.
  • Volakis, J. L., Chatterjee, A., Kempel, L. C. (1998). Finite Element Method Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications, Wiley-IEEE Press, 368 p.
  • Yalçın, O. (2019). Kanser Tedavisi İçin Kullanılan Hipertermi Yönteminin Dokulara Olan Isıl Etkisinin Tomografik Görüntüler Üzerinden 3-Boyutlu Modelleme ile İncelenmesi. Yüksek Lisans Tezi, Mersin Üniversitesi Fen Bilimleri Enstitüsü Elektrik-Elektronik Mühendisliği Ana Bilim Dalı, Mersin, Türkiye.
  • Yang, D., & Cao, M. (2020). Effect of changes in lung physical properties on microwave ablation zone during respiration. Biomedical Engineering Letters, 10, 285-298.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Classical Physics (Other), Engineering, Biomedical Engineering
Journal Section Articles
Authors

Reyyan Kavak Yürük 0000-0002-6637-6954

Early Pub Date December 18, 2023
Publication Date December 15, 2023
Published in Issue Year 2023 Volume: 13 Issue: 4

Cite

APA Kavak Yürük, R. (2023). Kanser Tedavisinde Mikrodalga Ablasyon İçin Optimum Parametrelerin Belirlenmesi. Karadeniz Fen Bilimleri Dergisi, 13(4), 1427-1450. https://doi.org/10.31466/kfbd.1292483