Research Article
BibTex RIS Cite

Sürdürülebilir Kalkınma için Mevcut Hidrolik Altyapılardan Enerji Geri Kazanımına Genel Bir Bakış

Year 2024, Volume: 14 Issue: 3, 1552 - 1570, 15.09.2024
https://doi.org/10.31466/kfbd.1496130

Abstract

Avrupa Birliğinin 2050 yılına kadar sera gazı emisyonlarının sıfırlanması ve iklim-nötr kıtası haline getirilmesi hedefi Türkiye için de yenilenebilir ve temiz enerji teknolojilerinin kullanımına yönelik tercihleri arttırmıştır. Hidroelektrik, enerji depolama kaynağı olarak dünyadaki en önemli düşük karbon ayak izine sahip enerji kaynağı olması sebebi ile mevcut su endüstrisi alt yapılarından enerji geri kazanım potansiyeli ile ilgili çok fazla yer seçimine yönelik saha çalışması ve vaka çalışması gerçekleştirilmiştir. Bu çalışmada, dünya üzerinde hidroelektrik üretimine ve hidroelektrik sınıflandırmasına yönelik veriler özetlenerek, küçük hidroelektrik santraller ana başlığı ile mevcut alt yapı sistemlerinden enerji geri kazanımını, iklim değişikliği bağlamında sürdürülebilir enerji yönetimi açısından değerlendirilmiştir. Ayrıca potansiyel enerji geri kazanım alanlarına küçük hidroelektrik santrallerinin kurulmasına yönelik genel bir değerlendirme yapılmış ve enerji üretimi yapan bu santrallere ait örnekler derlenmiştir.

References

  • Abbas A.I., Qandil M.D., Al-Haddad M.R., Saravani M.S. ve Amano R.S. (2019). Utilization of Hydro-turbines in water treatment plants, Journal of Energy Resources Technology, 141 (6), 062011
  • ACPWMA (2011). Common Guidelines for the Use of Small Hydropower in the Alpine Region,, Alpine Convention Platform Water Management in the Alps, AC11/B8/2
  • Al Achkar R. (2019). Renewable Energy For Advancıng Water-Energy Interlinkages For Sustainable Development Lebanon Case Studies, Expert Group Meeting on “Enhancing capacity building addressing Water and Energy interlinkages for Sustainable Development in the Arab Region, ESCWA-UNDESA, Beirut.
  • Alonso-Tristán C., González-Pena D., Díez-Mediavilla M., Rodríguez-Amigo M., García-Calderón T.,(2011). Small hydropower plants in Spain: A case study, Renewable and Sustainable Energy Reviews, 15, 2729-2735
  • Alpiq (2024). Swiss energy services provider and electricity producer in Europe, https://www.alpiq.com/power-generation/new-renewable-energy-sources/small-scale-hydropower-plants/riein
  • Barbón A., González-González F., Bayón L., Georgious R., (2023). Variable-Speed Operation of Micro-Hydropower Plants in Irrigation Infrastructure: An Energy and Cost Analysi, Applied Science,13, 13096.
  • Bousquet C., Samora I., Manso P., Rossi L., Heller P., Schleiss A.J. (2017). Assessment of hydropower potential in wastewater systems and application to Switzerland, Renewable Energy, 113, 64-73
  • Casini, M. (2015). Harvesting energy from in-pipe hydro systems at urban and building scale, International Journal of Smart Grid and Clean Energy, 4, 4, 316-327
  • CEDRO (2013). Hydropower from Non-River Sources; the potential in LEBANON, Country Energy Efficiency and Renewable Energy Demonstration Project for the Recovery of Lebanon, https://www.undp.org/lebanon/publications/hydropower-non-river-sources-potential-lebanon
  • Choulot A., Denis V. ve Punys P. (2012). Integration of Small Hydro Turbines into Existing Water Infrastructures, Hydropower - Practice and Application, Edt Hossein Samadi- Boroujeni, Intech Open, 334.
  • Clarkson Waste Water Treatment Plant Annuall Report, (2022). https://www.peelregion.ca/wastewater/_media/clarkson-WWTP-report-2022.pdf
  • Coelho B. ve Andrade-Campos A., (2014). Efficiency achievement in water supply systems—A review, Renewable and Sustainable Energy Reviews, 30, 59–84.
  • DSİ, (2022). DSİ 2022 Faaliyet Raporu, Tarım ve Orman Bakanlığı Devlet Su İşleri Genel Müdürlüğü, Ankara
  • Ebrahimi M., 2023. Power Generation Technologies Foundations, Design and Advances, Academic press-Elsevier, 649pp.
  • EU 2018/2001, (2018). Directive (EU) 2018/2001 of the European Parliament and of The Councıl of 11 December 2018 on The Promotion of the Use Of Energy From Renewable Sources (recast).
  • IEA, (2021). Hydropower Special Market Report Analysis and Forecast to 2030, International Energy Agency, https://iea.blob.core.windows.net/assets/4d2d4365-08c6-4171-9ea2-8549fabd1c8d/HydropowerSpecialMarketReport_corr.pdf
  • IHA, (2022). Hydropower Status Report Sector Trends and Insights, https://assets-global.website-files.com/5f749e4b9399c80b5e421384/63a1d6be6c0c9d38e6ab0594_IHA202212-status-report-02.pdf
  • IRENA, (2012). Hydropower, Renewable Energy Technologies: Cost Analysis Series, 1, 3/5,
  • Johnson K., Levince A. ve Curtis T. (2017). Energy Recovery Hydropower: Prospects for Off-Setting Electricity Costs for Agricultural, Municipal, and Industrial Water Providers and Users, National Renewable Energy Laboratory Technical Report, NREL/TP-6A20-70483
  • Llácer-Iglessias R.M., López-Jiménez P.A. ve Pérez-Sánchez,M., (2021). Hydropower Technology for Sustainable Energy Generation in Wastewater Systems: Learning from the Experience, Water, 13, 3259.
  • Kamal N.A., Park H. ve Shin S. (2014). Assessing the viability of microhydropower generation from the stormwater flow of the detention outlet in an urban area, Water Science and technology water supply, 14.4, 664-671
  • Kamal N.A., Lee G., Shin S. ve Park H. (2017). Design of Stormwater Particle Removal System for Small-Scale Urban Hydropower based on the Vortex and Coandă Effects, International Journal of Engineering and Technology, 9(2), 395-403.
  • Kucukali S., Al Bayatı, O. ve Maras, H. (2021). Finding the most suitable existing irrigation dams for small hydropower development in Turkey: A GIS-Fuzzy logic tool Renewable Energy, 172, 633-650
  • Kumar, A., Shei, T., Ahenkora, A., Caceres Rodriguez, R., Devernay, J.M., Freitas, M., Hall, D., Killingtveit, A. ve Liu, Z. (2011). Hydropower, IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, Edenhofer, O., Pichs-Mdruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Stechow, C. (Eds.), Cambridge University Press, Cambridge, New York.
  • Kumar D., Katoch S.S. (2015). Small hydropower development in western Himalayas: Strategy for faster implementation, Renewable Energy, 71, 571-578
  • EYDAP (2024). https://www.eydap.gr/en/TheCompany/Energy/HydroProjects/
  • Paschalis E., Alamanis N., Papageorgiou G., Tselios D., Zahidou A., Boufikos I., 2022. Holistic management of drinking water and sewerage network in terms of energy production. The case of Larissa city, Greece, Energy Nexus, 7, 100120
  • Pedraza J.M. (2022). Non-Conventional Energy in North America Current and Future Perspectives for Electricity Generation, Elsevier, India.
  • Pérez-Sánchez M., Sánchez-Romero F.J., Ramos H.M. ve López-Jiménez P.A. (2017). Energy Recovery in ExistingWater Networks: Towards Greater Sustainability, Water, 9 (97), 1-20
  • POST (2006). Carbon footprint of electricity generation Parliamentry Office of Science and Technology, Number 268, https://www.parliament.uk/globalassets/documents/post/postpn268.pdf
  • Punys P. ve Jurevicius L. (2022). Assessment of Hydropower Potential in Wastewater Systems and Application in a Lowland Country, Lithuania, Energies, 15, 5173
  • Purece C. ve Panaitescu V. (2023). Technologies for Using Hidden Hydropower Potential, IOSR Journal of Mechanical and Civil Engineering, 20, 3 (III), 1-11
  • Quaranta E. ve Revelli R., (2015). Output power and power losses estimation for an overshot water Wheel Renewable Energy, 83, 979-987
  • Quaranta E. ve Revelli R., (2016). Optimization of breastshot water wheels performance using different inflow configurations, Renewable Energy, 97, 243-251
  • REN21 (2020). Renewables 2020 Global Status Report (Paris: REN21 Secretariat). Renewable Energy Polıcy Network for the 21st Century, ISBN 978-3-948393-00-7
  • REN21 (2022). Renewables 2020 Global Status Report (Paris: REN21 Secretariat). Renewable Energy Polıcy Network for the 21st Century, ISBN 978-3-948393-04-5
  • Resmi Gazete, (2014). İçme Suyu Temin ve Dağıtım Sistemlerindeki Su Kayıplarının Kontrolü Yönetmeliği, 28994
  • Resmi Gazete, (2019). Elektrik Piyasasında Lisanssız Elektrik Üretim Yönetmeliği, 30772.
  • SHAPES (2020). Energy Recovery in Existing Infrastructures with Small Hydro Turbine, Multi Purpose Schemes-Overview and Examples, FP6, Small Hydro Action for the Promotion of Efficient Solutions Project partially funded by the European Directorate for Transport and Energy.
  • Shiji C., Dhakal S. ve Ou C. (2021). Greening small hydropower: A brief review, Energy Strategy Reviews , 36, 100676
  • Tahiroğlu A.F. ve Diş M.Ö. (2022). İçme Suyu İsale Hatlarındaki Basınç Kırıcı Yapılarda Enerji Üretiminin Yapısal Tasarımı ve Analizi: Kahramanmaraş Örneği, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 34 (1), 61-73.
  • Thyer S. ve White T. (2023). Energy recovery in a commercial building using pico-hydropower turbines: An Australian case study, Heliyon, 9, e16709
  • UNIDO, ICSHP (2022). World Small Hydropower Development Report 2022. United Nations Industrial Development Organization, Vienna, Austria; International Center on Small Hydro Power, Hangzhou, China. Available at www.unido.org/WSHPDR2022.
  • URL-1: https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik#:~:text=2022%20y%C4%B1l%C4%B1%20Kas%C4%B1m%20ay%C4%B1%20sonu,%C3%BC%20ise%20di%C4%9Fer%20kaynaklar%20%C5%9Feklindedir. (Erişim tarihi: 24.04.2024)
  • URL-2: https://www.lkw.li/unternehmen/kraftwerke.html, (Erişim tarihi: 22.02.2024)
  • URL-3: https://www.temsan.gov.tr/prjd/4/yuvacik-hes, Temsan Milli Enerji Teknolojileri, Yuvacık HES, (Erişim Tarihi: 21.01.2023)
  • URL-4 https://cms.esi.info/Media/documents/54053_1Yorkshire316689157666.pdf, Spaans Babcock Ltd., (Erişim Tarihi: 08.02.2024)
  • Ueda T., Goto M., Namihira A. ve Hirose Y. (2013). Perspectives of small-scale Hydropower Generation Using Irrigation Water in Japan, The Japan International Research Center for Agricultural Sciences, 47(2), 135-140.
  • Voltz T.J. ve Grischek T. (2019). Microturbines at DrinkingWater Tanks Fed by Gravity Pipelines: A Method and Excel Tool for Maximizing Annual Energy Generation Based on Historical Tank Outflow Data, Water, 11, 1403

Overview of Energy Recovery from Existing Hydraulic Infrastructures for Sustainable Development

Year 2024, Volume: 14 Issue: 3, 1552 - 1570, 15.09.2024
https://doi.org/10.31466/kfbd.1496130

Abstract

The European Council’s climate neutrality objectives by eliminating greenhouse gas emissions by 2050 have also increased Turkey’s preferences for the use of renewable and clean energy technologies. Since hydropower, as an energy storage source, is the most important energy source with a low carbon footprint in the world, many location assessments and case studies have been carried out on the energy recovery potential from existing water industry infrastructures. In this study, data on hydropower generation and hydropower classification in the world are summarized, and the energy recovery from existing infrastructure systems under the main heading of small hydroelectric power plants is evaluated in terms of sustainable energy management in the context of climate change.

References

  • Abbas A.I., Qandil M.D., Al-Haddad M.R., Saravani M.S. ve Amano R.S. (2019). Utilization of Hydro-turbines in water treatment plants, Journal of Energy Resources Technology, 141 (6), 062011
  • ACPWMA (2011). Common Guidelines for the Use of Small Hydropower in the Alpine Region,, Alpine Convention Platform Water Management in the Alps, AC11/B8/2
  • Al Achkar R. (2019). Renewable Energy For Advancıng Water-Energy Interlinkages For Sustainable Development Lebanon Case Studies, Expert Group Meeting on “Enhancing capacity building addressing Water and Energy interlinkages for Sustainable Development in the Arab Region, ESCWA-UNDESA, Beirut.
  • Alonso-Tristán C., González-Pena D., Díez-Mediavilla M., Rodríguez-Amigo M., García-Calderón T.,(2011). Small hydropower plants in Spain: A case study, Renewable and Sustainable Energy Reviews, 15, 2729-2735
  • Alpiq (2024). Swiss energy services provider and electricity producer in Europe, https://www.alpiq.com/power-generation/new-renewable-energy-sources/small-scale-hydropower-plants/riein
  • Barbón A., González-González F., Bayón L., Georgious R., (2023). Variable-Speed Operation of Micro-Hydropower Plants in Irrigation Infrastructure: An Energy and Cost Analysi, Applied Science,13, 13096.
  • Bousquet C., Samora I., Manso P., Rossi L., Heller P., Schleiss A.J. (2017). Assessment of hydropower potential in wastewater systems and application to Switzerland, Renewable Energy, 113, 64-73
  • Casini, M. (2015). Harvesting energy from in-pipe hydro systems at urban and building scale, International Journal of Smart Grid and Clean Energy, 4, 4, 316-327
  • CEDRO (2013). Hydropower from Non-River Sources; the potential in LEBANON, Country Energy Efficiency and Renewable Energy Demonstration Project for the Recovery of Lebanon, https://www.undp.org/lebanon/publications/hydropower-non-river-sources-potential-lebanon
  • Choulot A., Denis V. ve Punys P. (2012). Integration of Small Hydro Turbines into Existing Water Infrastructures, Hydropower - Practice and Application, Edt Hossein Samadi- Boroujeni, Intech Open, 334.
  • Clarkson Waste Water Treatment Plant Annuall Report, (2022). https://www.peelregion.ca/wastewater/_media/clarkson-WWTP-report-2022.pdf
  • Coelho B. ve Andrade-Campos A., (2014). Efficiency achievement in water supply systems—A review, Renewable and Sustainable Energy Reviews, 30, 59–84.
  • DSİ, (2022). DSİ 2022 Faaliyet Raporu, Tarım ve Orman Bakanlığı Devlet Su İşleri Genel Müdürlüğü, Ankara
  • Ebrahimi M., 2023. Power Generation Technologies Foundations, Design and Advances, Academic press-Elsevier, 649pp.
  • EU 2018/2001, (2018). Directive (EU) 2018/2001 of the European Parliament and of The Councıl of 11 December 2018 on The Promotion of the Use Of Energy From Renewable Sources (recast).
  • IEA, (2021). Hydropower Special Market Report Analysis and Forecast to 2030, International Energy Agency, https://iea.blob.core.windows.net/assets/4d2d4365-08c6-4171-9ea2-8549fabd1c8d/HydropowerSpecialMarketReport_corr.pdf
  • IHA, (2022). Hydropower Status Report Sector Trends and Insights, https://assets-global.website-files.com/5f749e4b9399c80b5e421384/63a1d6be6c0c9d38e6ab0594_IHA202212-status-report-02.pdf
  • IRENA, (2012). Hydropower, Renewable Energy Technologies: Cost Analysis Series, 1, 3/5,
  • Johnson K., Levince A. ve Curtis T. (2017). Energy Recovery Hydropower: Prospects for Off-Setting Electricity Costs for Agricultural, Municipal, and Industrial Water Providers and Users, National Renewable Energy Laboratory Technical Report, NREL/TP-6A20-70483
  • Llácer-Iglessias R.M., López-Jiménez P.A. ve Pérez-Sánchez,M., (2021). Hydropower Technology for Sustainable Energy Generation in Wastewater Systems: Learning from the Experience, Water, 13, 3259.
  • Kamal N.A., Park H. ve Shin S. (2014). Assessing the viability of microhydropower generation from the stormwater flow of the detention outlet in an urban area, Water Science and technology water supply, 14.4, 664-671
  • Kamal N.A., Lee G., Shin S. ve Park H. (2017). Design of Stormwater Particle Removal System for Small-Scale Urban Hydropower based on the Vortex and Coandă Effects, International Journal of Engineering and Technology, 9(2), 395-403.
  • Kucukali S., Al Bayatı, O. ve Maras, H. (2021). Finding the most suitable existing irrigation dams for small hydropower development in Turkey: A GIS-Fuzzy logic tool Renewable Energy, 172, 633-650
  • Kumar, A., Shei, T., Ahenkora, A., Caceres Rodriguez, R., Devernay, J.M., Freitas, M., Hall, D., Killingtveit, A. ve Liu, Z. (2011). Hydropower, IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, Edenhofer, O., Pichs-Mdruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Stechow, C. (Eds.), Cambridge University Press, Cambridge, New York.
  • Kumar D., Katoch S.S. (2015). Small hydropower development in western Himalayas: Strategy for faster implementation, Renewable Energy, 71, 571-578
  • EYDAP (2024). https://www.eydap.gr/en/TheCompany/Energy/HydroProjects/
  • Paschalis E., Alamanis N., Papageorgiou G., Tselios D., Zahidou A., Boufikos I., 2022. Holistic management of drinking water and sewerage network in terms of energy production. The case of Larissa city, Greece, Energy Nexus, 7, 100120
  • Pedraza J.M. (2022). Non-Conventional Energy in North America Current and Future Perspectives for Electricity Generation, Elsevier, India.
  • Pérez-Sánchez M., Sánchez-Romero F.J., Ramos H.M. ve López-Jiménez P.A. (2017). Energy Recovery in ExistingWater Networks: Towards Greater Sustainability, Water, 9 (97), 1-20
  • POST (2006). Carbon footprint of electricity generation Parliamentry Office of Science and Technology, Number 268, https://www.parliament.uk/globalassets/documents/post/postpn268.pdf
  • Punys P. ve Jurevicius L. (2022). Assessment of Hydropower Potential in Wastewater Systems and Application in a Lowland Country, Lithuania, Energies, 15, 5173
  • Purece C. ve Panaitescu V. (2023). Technologies for Using Hidden Hydropower Potential, IOSR Journal of Mechanical and Civil Engineering, 20, 3 (III), 1-11
  • Quaranta E. ve Revelli R., (2015). Output power and power losses estimation for an overshot water Wheel Renewable Energy, 83, 979-987
  • Quaranta E. ve Revelli R., (2016). Optimization of breastshot water wheels performance using different inflow configurations, Renewable Energy, 97, 243-251
  • REN21 (2020). Renewables 2020 Global Status Report (Paris: REN21 Secretariat). Renewable Energy Polıcy Network for the 21st Century, ISBN 978-3-948393-00-7
  • REN21 (2022). Renewables 2020 Global Status Report (Paris: REN21 Secretariat). Renewable Energy Polıcy Network for the 21st Century, ISBN 978-3-948393-04-5
  • Resmi Gazete, (2014). İçme Suyu Temin ve Dağıtım Sistemlerindeki Su Kayıplarının Kontrolü Yönetmeliği, 28994
  • Resmi Gazete, (2019). Elektrik Piyasasında Lisanssız Elektrik Üretim Yönetmeliği, 30772.
  • SHAPES (2020). Energy Recovery in Existing Infrastructures with Small Hydro Turbine, Multi Purpose Schemes-Overview and Examples, FP6, Small Hydro Action for the Promotion of Efficient Solutions Project partially funded by the European Directorate for Transport and Energy.
  • Shiji C., Dhakal S. ve Ou C. (2021). Greening small hydropower: A brief review, Energy Strategy Reviews , 36, 100676
  • Tahiroğlu A.F. ve Diş M.Ö. (2022). İçme Suyu İsale Hatlarındaki Basınç Kırıcı Yapılarda Enerji Üretiminin Yapısal Tasarımı ve Analizi: Kahramanmaraş Örneği, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 34 (1), 61-73.
  • Thyer S. ve White T. (2023). Energy recovery in a commercial building using pico-hydropower turbines: An Australian case study, Heliyon, 9, e16709
  • UNIDO, ICSHP (2022). World Small Hydropower Development Report 2022. United Nations Industrial Development Organization, Vienna, Austria; International Center on Small Hydro Power, Hangzhou, China. Available at www.unido.org/WSHPDR2022.
  • URL-1: https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik#:~:text=2022%20y%C4%B1l%C4%B1%20Kas%C4%B1m%20ay%C4%B1%20sonu,%C3%BC%20ise%20di%C4%9Fer%20kaynaklar%20%C5%9Feklindedir. (Erişim tarihi: 24.04.2024)
  • URL-2: https://www.lkw.li/unternehmen/kraftwerke.html, (Erişim tarihi: 22.02.2024)
  • URL-3: https://www.temsan.gov.tr/prjd/4/yuvacik-hes, Temsan Milli Enerji Teknolojileri, Yuvacık HES, (Erişim Tarihi: 21.01.2023)
  • URL-4 https://cms.esi.info/Media/documents/54053_1Yorkshire316689157666.pdf, Spaans Babcock Ltd., (Erişim Tarihi: 08.02.2024)
  • Ueda T., Goto M., Namihira A. ve Hirose Y. (2013). Perspectives of small-scale Hydropower Generation Using Irrigation Water in Japan, The Japan International Research Center for Agricultural Sciences, 47(2), 135-140.
  • Voltz T.J. ve Grischek T. (2019). Microturbines at DrinkingWater Tanks Fed by Gravity Pipelines: A Method and Excel Tool for Maximizing Annual Energy Generation Based on Historical Tank Outflow Data, Water, 11, 1403
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Environmentally Sustainable Engineering, Clean Production Technologies, Water Resources Engineering, Water Resources and Water Structures
Journal Section Articles
Authors

Ummukulsum Ozel Akdemir 0000-0002-1318-6655

Andaç Akdemir 0000-0002-7592-4449

Publication Date September 15, 2024
Submission Date June 5, 2024
Acceptance Date September 5, 2024
Published in Issue Year 2024 Volume: 14 Issue: 3

Cite

APA Ozel Akdemir, U., & Akdemir, A. (2024). Sürdürülebilir Kalkınma için Mevcut Hidrolik Altyapılardan Enerji Geri Kazanımına Genel Bir Bakış. Karadeniz Fen Bilimleri Dergisi, 14(3), 1552-1570. https://doi.org/10.31466/kfbd.1496130