Research Article
BibTex RIS Cite

Ligninin Yaşlandırılmış Bitüm Üzerindeki Etkisinin İncelenmesi

Year 2024, Volume: 14 Issue: 4, 1748 - 1757, 15.12.2024
https://doi.org/10.31466/kfbd.1458442

Abstract

Sürdürülebilirlik dünya genelinde önemsenen bir konudur. Bitüm, ham petrolden elde edilerek, ortam sıcaklığında katı olan, tolüen içerisinde tamamına yakını çözünen, uçucu olmayan, yapışkan formda olup, su yalıtım malzemesi olarak tanımlanır. Asfalt piyasası düşük karbondioksit emisyonu açısından sürdürülebilirliği daha yüksek alternatifler aramaktadır. Bitümün kısmen yerini alabilen alternatif sürdürülebilir bağlayıcıların kullanımı karbondioksit emisyonlarının azaltılmasına katkıda bulunur. Lignin, yeryüzünde en fazla bulunan doğal polimerlerden birisidir. Rolü, bitki hücrelerinde, çeper maddesi olan kimyasal bileşenleri matris yapı içinde bir arada tutmak ve direnç sağlamaktır Kâğıt hamuru üretimi sonrası milyonlarca ton lignin açığa çıkmakta, bunlar atık olarak görülmektedir. Depolimerize olan fraksiyonlar, yapılarındaki toksik kimyasal yapılardan dolayı önemli çevre sorunlarına sebep olmaktadır. Çalışma kapsamında laboratuvar ortamında kısa dönem yaşlandırılmış bitüm, ağırlığınca %15 ve %20 oranlarında lignin eklenmesiyle modifiye edilmiş, reolojik etkisinin belirlenmesi için geleneksel Penetrasyon ve Süneklik Deneyleri yapılarak ve Taramalı Elektron Mikroskobu (SEM) görüntüleri analiz edilmiştir. Bununla beraber lignin kullanımının etkin oranının belirlenmesi hedeflenmiştir. Elde edilen bulgular, lignin kullanımının artmasıyla, gerek penetrasyon gerekse de süneklik testlerinde, bitümde sertleşme oranını arttırdığını göstermiştir. Ayrıca, SEM verilerine dayanarak, lignin parçacıklarının yüzeyi düzensiz moleküller olduğu ve bitüm içerisinde homojen dağıldığı gözlenmiştir. Fakat, kullanım oranının artması ile lignin parçacıkları bitüm içerisindeki dağılımı düzensizleşmiştir.

References

  • Abraham, H., (1938). Asphalts and allied substances: their occurrence, modes of production, uses in the arts, and methods of testing. New York: D. Van Nostrand Co., 4th ed.
  • Brauns, F.E. and Brauns, D.A. (1960). The Chemistry of Lignin: Suplement Volume Covering the Literature for the Years 1949–1958 (1st Edition). Academic Press Inc. Ltd, New York and London, 804p.
  • European Commission. (2015). Closing the loop—An EU action plan for the circular economy. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions.
  • Gonçalves, A.R. and Benar, P. (2001). Hydroxymethylation and oxidation of organosolv lignins and utilization of the products. Bioresource technology, 79(2), 103-111. https://doi.org/10.1016/S0960-8524(01)00056-6
  • Kumar, A., Choudhary, R., Kataki, R., Kumar, A. (2020). Bioasphalt binders: introducing sustainability in a non-renewable road construction material. Civil Eng. Constr. Rev., 34(4), 34–42
  • Liu, H., Fu, L., Jiao, Y., Tao, J. and Wang, X. (2017). Short-term aging effect on properties of sustainable pavement asphalts modified by waste rubber and diatomite. Sustainability, 9(6), 996. https://doi.org/10.3390/su9060996
  • Mastrolitti, S., Borsella, E., Giuliano, A., Petrone, M.T., De Bari, I., Gosselink, R., van Erven, G., Annevelink, E., Triantafyllidis, K.S. and Stichnothe, H. (2021). Sustainable lignin valorization: Technical lignin, processes and market development. IEA Bioenergy Task 42 and LignoCOST. 2021 https://task42.ieabioenergy.com/wp-content/uploads/sites/10/2021/11/Sustainable-Lignin-Valorization_rev26-01-2022.pdf
  • McCready, N.S. and Williams, R.C. (2008). Utilization of biofuel coproducts as performance enhancers in asphalt binder. Transportation Research Record, 2051(1), 8-14. https://doi.org/10.3141/2051-02
  • Patel, A. (2022). Risk Management in Petroleum Refinery, Doctoral dissertation, School of Petroleum Management, India.
  • Rasman, M., Hassan, N. A., Hainin, M. R., Jaya, R. P., Haryati, Y., Shukry, N. A. M., ... & Kamaruddin, N. H. M. (2018). Engineering properties of bitumen modified with bio-oil. In MATEC Web of Conferences (Vol. 250, p. 02003). EDP Sciences.
  • Queen, B.L. and Tollefsbol, T.O. (2010). Polyphenols and aging. Current Aging Science, 3(1), 34-42. http://dx.doi.org/10.2174/1874609811003010034
  • Razza, F., Briani, C., Breton, T. and Marazza, D. (2020). Metrics for quantifying the circularity of bioplastics: The case of bio-based and biodegradable mulch films. Resources, Conservation and Recycling, 159, 104753.
  • Ren S, Liu X, Zhang Y et al. (2021). Multi-scale characterization of lignin modifed bitumen using experimental and molecular dynamics simulation methods. Constr. Build. Mater., 287, 123058. https://doi.org/10.1016/j.conbuildmat.2021.123058
  • Yatish, R.G., Kumar, D. H., Chinnabhandar, R. K., Raviraj, R.K. and Shankar, A. R. (2024). A review of the potential application of lignin in the production of bio-binder: challenges and opportunities. Journal of Materials Science, 59(8), 3205-3224. https://doi.org/10.1007/s10853-024-09429-3
  • Robertson, R.E., Bishara, S.W. and Mahoney, D. (2006). Lignin as antioxidant: Limited study on asphalts frequently used on Kansas roads, Transportation Research Board 85th Annual Meeting, 22-26.01.2006, Washington DC, United States (No. 06-0254). https://trid.trb.org/view/776247
  • Sun, D., Sun, G., Du, Y., Zhu, X., Lu, T., Pang, Q. Shi, S. and Dai, Z. (2017). Evaluation of optimized bio-asphalt containing high content waste cooking oil residues. Fuel, 202, 529-540. https://doi.org/10.1016/j.fuel.2017.04.069
  • Sundstrom, D.W., Klei, H.E. and Daubenspeck, T.H. (1983). Use of byproduct lignins as extenders in asphalt. Industrial and Engineering Chemistry Product Research and Development, 22(3), 496-500. https://doi.org/10.1021/i300011a022
  • Terrel, R.L., Rimsritong, S. (1979). Wood Lignins used as extenders for asphalt in bituminous pavements (with Discussion). In: Association of asphalt paving technologists proceedings
  • Wang, L., Shi, H., Sun, Y., Hou, M., Sheng, X., Li, N. and Niu, M. (2020). Highly efficient lignin removal from the waste liquor of chemical pulping with an integrated polyaluminium chloride-assisted acidification/activated carbon adsorption process. Journal of Cleaner Production, 267, 122005. https://doi.org/10.1016/j.jclepro.2020.122005
  • Watkins, D., Nuruddin, M., Hosur, M., Tcherbi-Narteh, A. and Jeelani, S. (2015). Extraction and characterization of lignin from different biomass resources. Journal of Materials Research and Technology, 4(1), 26-32. https://doi.org/10.1016/j.jmrt.2014.10.009
  • Wu, J., Liu, Q., Wang, C., Wu, W. and Han, W. (2021). Investigation of lignin as an alternative extender of bitumen for asphalt pavements. Journal of Cleaner Production, 283, 124663. https://doi.org/10.1016/j.jclepro.2020.124663

Investigation of the Effect of Lignin on Aged Bitumen

Year 2024, Volume: 14 Issue: 4, 1748 - 1757, 15.12.2024
https://doi.org/10.31466/kfbd.1458442

Abstract

Globally, sustainability is an important issue. Bitumen is obtained from crude oil, is solid at ambient temperature, almost completely soluble in toluene, is in a non-volatile, sticky form, and is defined as a waterproofing material. In terms of low carbon dioxide emissions, the asphalt industry is looking for more sustainable options. Lignin is one of the most common natural polymers on earth. Its role is to hold the chemical components, which is the wall material, together in the matrix structure in plant cells and to provide resistance. Millions of tons of lignin are released after pulp production which is considered waste material. Depolymerized fractions cause significant environmental problems due to toxic chemical structures. In this study, short-term aged bitumen was modified by lignin at the rates of 15% and 20% to bitumen weight, and conventional Penetration Test, Ductility Test, and Scanning Electron Microscope (SEM) analysis were carried out to determine the rheological effect. In addition, it was aimed at determining the effective rate of lignin usage. In conclusion, the current research aimed to demonstrate that lignin, as a value-added modifier, is a promising solution with both environmental and engineering values. Also, as the lignin rate increased, the hardening rate of short-term aged bitumen increased in both penetration and ductility tests. Furthermore, SEM data revealed that particles with irregular surfaces are homogeneously distributed in aged bitumen. However, with the increase in usage rate, the distribution of lignin particles in bitumen became irregular.

References

  • Abraham, H., (1938). Asphalts and allied substances: their occurrence, modes of production, uses in the arts, and methods of testing. New York: D. Van Nostrand Co., 4th ed.
  • Brauns, F.E. and Brauns, D.A. (1960). The Chemistry of Lignin: Suplement Volume Covering the Literature for the Years 1949–1958 (1st Edition). Academic Press Inc. Ltd, New York and London, 804p.
  • European Commission. (2015). Closing the loop—An EU action plan for the circular economy. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions.
  • Gonçalves, A.R. and Benar, P. (2001). Hydroxymethylation and oxidation of organosolv lignins and utilization of the products. Bioresource technology, 79(2), 103-111. https://doi.org/10.1016/S0960-8524(01)00056-6
  • Kumar, A., Choudhary, R., Kataki, R., Kumar, A. (2020). Bioasphalt binders: introducing sustainability in a non-renewable road construction material. Civil Eng. Constr. Rev., 34(4), 34–42
  • Liu, H., Fu, L., Jiao, Y., Tao, J. and Wang, X. (2017). Short-term aging effect on properties of sustainable pavement asphalts modified by waste rubber and diatomite. Sustainability, 9(6), 996. https://doi.org/10.3390/su9060996
  • Mastrolitti, S., Borsella, E., Giuliano, A., Petrone, M.T., De Bari, I., Gosselink, R., van Erven, G., Annevelink, E., Triantafyllidis, K.S. and Stichnothe, H. (2021). Sustainable lignin valorization: Technical lignin, processes and market development. IEA Bioenergy Task 42 and LignoCOST. 2021 https://task42.ieabioenergy.com/wp-content/uploads/sites/10/2021/11/Sustainable-Lignin-Valorization_rev26-01-2022.pdf
  • McCready, N.S. and Williams, R.C. (2008). Utilization of biofuel coproducts as performance enhancers in asphalt binder. Transportation Research Record, 2051(1), 8-14. https://doi.org/10.3141/2051-02
  • Patel, A. (2022). Risk Management in Petroleum Refinery, Doctoral dissertation, School of Petroleum Management, India.
  • Rasman, M., Hassan, N. A., Hainin, M. R., Jaya, R. P., Haryati, Y., Shukry, N. A. M., ... & Kamaruddin, N. H. M. (2018). Engineering properties of bitumen modified with bio-oil. In MATEC Web of Conferences (Vol. 250, p. 02003). EDP Sciences.
  • Queen, B.L. and Tollefsbol, T.O. (2010). Polyphenols and aging. Current Aging Science, 3(1), 34-42. http://dx.doi.org/10.2174/1874609811003010034
  • Razza, F., Briani, C., Breton, T. and Marazza, D. (2020). Metrics for quantifying the circularity of bioplastics: The case of bio-based and biodegradable mulch films. Resources, Conservation and Recycling, 159, 104753.
  • Ren S, Liu X, Zhang Y et al. (2021). Multi-scale characterization of lignin modifed bitumen using experimental and molecular dynamics simulation methods. Constr. Build. Mater., 287, 123058. https://doi.org/10.1016/j.conbuildmat.2021.123058
  • Yatish, R.G., Kumar, D. H., Chinnabhandar, R. K., Raviraj, R.K. and Shankar, A. R. (2024). A review of the potential application of lignin in the production of bio-binder: challenges and opportunities. Journal of Materials Science, 59(8), 3205-3224. https://doi.org/10.1007/s10853-024-09429-3
  • Robertson, R.E., Bishara, S.W. and Mahoney, D. (2006). Lignin as antioxidant: Limited study on asphalts frequently used on Kansas roads, Transportation Research Board 85th Annual Meeting, 22-26.01.2006, Washington DC, United States (No. 06-0254). https://trid.trb.org/view/776247
  • Sun, D., Sun, G., Du, Y., Zhu, X., Lu, T., Pang, Q. Shi, S. and Dai, Z. (2017). Evaluation of optimized bio-asphalt containing high content waste cooking oil residues. Fuel, 202, 529-540. https://doi.org/10.1016/j.fuel.2017.04.069
  • Sundstrom, D.W., Klei, H.E. and Daubenspeck, T.H. (1983). Use of byproduct lignins as extenders in asphalt. Industrial and Engineering Chemistry Product Research and Development, 22(3), 496-500. https://doi.org/10.1021/i300011a022
  • Terrel, R.L., Rimsritong, S. (1979). Wood Lignins used as extenders for asphalt in bituminous pavements (with Discussion). In: Association of asphalt paving technologists proceedings
  • Wang, L., Shi, H., Sun, Y., Hou, M., Sheng, X., Li, N. and Niu, M. (2020). Highly efficient lignin removal from the waste liquor of chemical pulping with an integrated polyaluminium chloride-assisted acidification/activated carbon adsorption process. Journal of Cleaner Production, 267, 122005. https://doi.org/10.1016/j.jclepro.2020.122005
  • Watkins, D., Nuruddin, M., Hosur, M., Tcherbi-Narteh, A. and Jeelani, S. (2015). Extraction and characterization of lignin from different biomass resources. Journal of Materials Research and Technology, 4(1), 26-32. https://doi.org/10.1016/j.jmrt.2014.10.009
  • Wu, J., Liu, Q., Wang, C., Wu, W. and Han, W. (2021). Investigation of lignin as an alternative extender of bitumen for asphalt pavements. Journal of Cleaner Production, 283, 124663. https://doi.org/10.1016/j.jclepro.2020.124663
There are 21 citations in total.

Details

Primary Language English
Subjects Transportation Engineering
Journal Section Articles
Authors

Ömer Genç 0009-0008-4016-6802

Başak Varli Bingöl 0000-0002-7934-7482

Publication Date December 15, 2024
Submission Date March 25, 2024
Acceptance Date October 11, 2024
Published in Issue Year 2024 Volume: 14 Issue: 4

Cite

APA Genç, Ö., & Varli Bingöl, B. (2024). Investigation of the Effect of Lignin on Aged Bitumen. Karadeniz Fen Bilimleri Dergisi, 14(4), 1748-1757. https://doi.org/10.31466/kfbd.1458442