Research Article
BibTex RIS Cite

Krom(VI) İyonlarının Adsorpsiyonunda Deniz Çayırlarından Üretilen Aktif Karbonun Kullanımı

Year 2024, Volume: 14 Issue: 4, 2128 - 2142, 15.12.2024
https://doi.org/10.31466/kfbd.1526347

Abstract

Bu araştırmada, deniz çayırı olarak da bilinen Posidonia oceanica'dan elde edilen aktif kömür (PO-AK) adsorban olarak kullanılarak ağır metal Cr (VI) iyonlarının adsorpsiyonu temas süresi, başlangıç konsantrasyonu, pH, sıcaklık, adsorban dozajı gibi değişen parametreler ışığında incelenmiştir. Cr (VI) iyonlarının adsorpsiyon mekanizmasında çözelti pH'sı önemli bir parametre olup; çalışmada Cr (VI) iyonlarının PO-AK ile adsorpsiyonunda en etkili pH değeri 2.0 olarak tespit edilmiştir. Çalışmada elde edilen verilerden standart Gibbs serbest enerjisi (∆G0), standart entalpi (∆H0) ve standart entropi (∆S0) değerleri hesaplanmış; sırasıyla -20.06 kJ mol-1, -32.40 kJ mol-1 ve -0.04 kJ mol-1 olarak bulunmuştur. Adsorpsiyon sürecinde sistem sıcaklığının yükselmesiyle adsorpsiyon veriminin düştüğü ve adsorpsion reaksiyon mekanizmasının ekzotermik olarak gerçekleştiği tespit edilmiştir. İncelenen konsantrasyon etkisinden elde edilen veriler Langmuir, Freundlich ve Temkin izotermlerine uygunluk göstermiştir. Bu çalışmadan elde edilen sonuçlara göre gerekli optimum koşullar sağlandığında, sulu çözeltilerden Cr (VI) iyonlarının gideriminde Posidonia oceanica’dan elde edilen aktif kömürün adsorplama kabiliyetinin oldukça yüksek (%98) olduğu bulunmuştur.

Ethical Statement

Yapılan çalışmada araştırma ve yayın etiğine uyulmuştur.

Thanks

Deneysel çalışmaların gerçekleştirilmesinde kullanılan cihazlar için sağladıkları destek ve katkılarından dolayı Pamukkale Üniversitesi Fen Fakültesi Kimya Bölümü ve Doç. Dr. Ramazan Donat’a teşekkür ederim.

References

  • Alqarni, L.S., Algethami, J.S., Kaim Billah, R.E., Alorabi, A.Q., Alnaam, Y.A:, Algethami, F.K., Bahsis, L., Jawad, A.H., Wasilewska, M., and López-Maldonado, E.A. (2024). A novel chitosan-alginate@Fe/Mn mixed oxide nanocomposite for highly efficient removal of Cr (VI) from wastewater: Experiment and adsorption mechanism, International Journal of Biological Macromolecules, 263(2), 129989.
  • ASTM D1687-17, (2017). Standard Test Methods for Chromium in Water, ASTM International, West Conshohocken, PA.
  • Anah L., and Astrini, N. (2017). IOP Conference Series, Earth and Environmental Science, 60 012010.
  • Aytas, Ş., Turkozu D.A. ve Gok, C. (2011). Biosorption of uranium(VI) by bi-functionalized low cost biocomposite adsorbent, Desalination, 280, 354–362.
  • Bajpai, J., Shrivastava, R., and Bajpai A.K. (2004). Dynamic and equilibrium studies on adsorption of Cr (VI) ions onto binary bio-polymeric beads of cross linked alginate and gelatin. Colloids Surf. A: Physicochem. Eng. Aspects, 236 (1–3) 81-90.
  • Bayramoğlu, G., Çelik, G., Yalçın, E., Yılmaz, M. ve Arıca, M.Y. (2005). Modification of surface properties of Lentinus sajor-caju mycelia by physical and chemical methods: evaluation of their Cr6+ removal efficiencies from aqueous medium. Journal of Hazardous Materials, 119 (1–3) 219-229.
  • Donat, 2024. Uranyum(VI) İyonlarının Kula Volkaniti Üzerine Adsorpsiyonu. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 11(1), 93-103.
  • Edebali, S. ve Pehlivan, E. (2010). Evaluation of Amberlite IRA96 and Dowex 1×8 ion-exchange resins for the removal of Cr (VI) from aqueous solution, Chemical Engineering Journal, 161 (1–2), 161-166.
  • Fang, Y., Yang, K., Zhang, Y., Peng, C., Robledo-Cabrera, A., and López-Valdivieso (2021). A. Highly surface activated carbon to remove Cr (VI) from aqueous solution with adsorbent recycling, Environmental Research, 197, 111151.
  • Freundlich, H. M. F., (1906). Over the Adsorption in Solution. Journal of Physical Chemistry, 57, 385-470.
  • Gaikwad, M.S. and Balomajumder, C. (2017). Simultaneous rejection of fluoride and Cr (VI) from synthetic fluoride-Cr (VI) binary water system by polyamide flat sheet reverse osmosis membrane and prediction of membrane performance by CFSK and CFSD models, Journal of Molecular Liquids, 234, 194-200.
  • Gardea-Torresdey, J.L., Tiemann, K.J. Armendariz, V., Bess-Oberto, L., Chianelli, R.R., Rios, J., Parsons, J.G., and Gamez, G. (2000). Characterisation of Cr (VI) binding and reduction to Cr (III) by the agricultural by products of Avena monida (Oat) biomass, Journal of Hazardous Materials, B80, 175–188.
  • Gu, D., Liu, Y., Li, X., Zhu, H., Cui, Y., Yang, W. And Hao, J. (2023). Porphyrin-based metal–organic frameworks loaded with Ag nanoparticles and their nanofibrous filters for the photocatalytic reduction of Cr (VI), Applied Surface Science, 614, 156192.
  • Karthikeyan, T., Rajgopal, S., and Miranda, L.R. (2005). Chromium (VI) adsorption from aqueous solution by Hevea brasiliensis sawdust activated carbon. Journal of Hazardous Materials, 124 (1–3) 192-199.
  • Khan, S. A., Rehman, R., and Khan, M. A. (1995). Adsorption of chromium (III), chromium (VI) and silver (I) on bentonite. Waste Management, 15(4), 271-282.
  • Langmuir, I. (1918). The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. Journal of the American Chemical Society, 40(9), 1361-1403.
  • Li, W., Zhang, C., Wei, X., Zhang, H.,Han, M., Sun, W., and Li, W. (2022) Efficient resource treatment of hexavalent chromium wastewater based on lead carbonate (cerussite)-induced precipitation separation, Process Safety and Environmental Protection, 165, 475-486.
  • Lin, C., Qiao, S., Luo, W., Liu, Y., Liu, D., Li, X., and Liu, M. (2014). Thermodynamics, kinetics, and regeneration studies for adsorption of Cr(IV) from aqueous solutions using modified cellulose as adsorbent. BioResources 9(4), 6998-7017.
  • Malkoç, E., Nuhoğlu Y. ve Dündar, M. (2006). Adsorption of chromium(VI) on pomace—An olive oil industry waste: Batch and column studies. Journal of Hazardous Materials, 138(1), 2, 142-151.
  • Masuku, M., Nure, J.F., Atagana, H.I., Hlongwa, N., and Nkambule, T.T.I. (2024). Pinecone biochar for the Adsorption of chromium (VI) from wastewater: Kinetics, thermodynamics, and adsorbent regeneration, Environmental Research, 258,119423.
  • Miretzky, P., Cirelli, A.F. (2010). Cr (VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review, Journal of Hazardous Materials, 180 (1-3), 1-19.
  • Mohan, D., Singh, K.P., and Singh, V.K. (2005). Removal of hexavalent chromium from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth. Ind. Eng. Chem. Res., 44, 1027-1042.
  • Nizam, T., Krishnan, K.A., Joseph, A., and Krishnan, R.R. (2024). Isotherm, kinetic and thermodynamic modelling of liquid phase adsorption of the heavy metal ions Zn(II), Pb(II) and Cr (VI) onto MgFe2O4 nanoparticles, Groundwater for Sustainable Development, 25, 101120.
  • Pakade, V.E., Tavengwab, N.T., and Madikizelac, L.M. (2019). Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods, Royal Society of Chemistry Advances, 9, 26142.
  • Park, D., Yun, Y. S., and Park, J. M. (2010). The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering, 15(1), 86–102.
  • Ramazanoğlu, D., Mohammed, Z.A., Drbas, S.A. and Khalid, M. (2023). Synthesis of Activated Carbon from Different Biomasses, Şırnak University Journal Of Sciences, 3(2), 24-33.
  • Rao, M., Parwate, A.V., and Bhole, A.G. (2002). Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash. Waste Management, 22(7), 821-830.
  • Su, M., Fang, Y., Li, B., Yin, W., Gu, J., Liang, H., Li, P., and Wu, J. (2019). Enhanced hexavalent chromium removal by activated carbon modified with micro-sized goethite using a facile impregnation method, Science of The Total Environment, 647, 47–56.
  • Tewari, N., Vasudevan, P., and Guha, B.K. (2005). Study on biosorption of Cr (VI) by Mucor hiemalis, Biochemical Engineering Journal, 23(2), 185-192.
  • Wang, H., Wang, W., Zhou, S., and Gao, X. (2023). Adsorption mechanism of Cr (VI) on woody-activated carbons, Heliyon, 9 e13267.
  • Yu, F., Cen, L., Lei, C., Zhu, F., Zhou, L., Zhu, H. and Yu,B. (2023). Fabrication of recyclable UiO-66-NH2/PVDF hybrid fibrous membrane for Cr (VI) removal in wastewater, Journal of Industrial and Engineering Chemistry, 123, 104-115.
  • Zhou, L., Liu, Y., Liu, S., Yin, Y., Zeng, G., Tan, X. Hu, X., Hu, X., Jiang, L., Ding, Y., and Huang, X. (2016). Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures. Bioresource Technology, 218, 351–359.

Use of Activated Carbon Produced from Seagrasses in the Adsorption of Chromium (VI) Ions

Year 2024, Volume: 14 Issue: 4, 2128 - 2142, 15.12.2024
https://doi.org/10.31466/kfbd.1526347

Abstract

In this study, activated carbon (PO-AC) derived from Posidonia oceanica, also known as seagrass, was used as an adsorbent to investigate the adsorption of the heavy metal Cr (VI) ions under varying parameters such as contact time, initial concentration, pH, temperature, and adsorbent dosage. pH of the solution is a crucial parameter in the adsorption mechanism of Cr (VI) ions, and the most effective pH value for the adsorption of Cr (VI) ions with PO-AC was found to be 2.0. From the data obtained in the study, the standard Gibbs free energy (∆G°), standard enthalpy (∆H°), and standard entropy (∆S°) values were calculated as -20.06 kJ mol⁻¹, -32.40 kJ mol⁻¹, and -0.04 kJ mol⁻¹, respectively. It was determined that the adsorption efficiency decreased with an increase in system temperature and that the adsorption reaction mechanism occurred exothermically. The data obtained from the concentration effect showed compliance with both Langmuir, Freundlich and Temkin isotherms. According to the results obtained from this study, it was found that the adsorption ability of activated charcoal obtained from Posidonia oceanica in the removal of Cr (VI) ions from aqueous solutions is quite high (98%) when the necessary optimum conditions are provided.

References

  • Alqarni, L.S., Algethami, J.S., Kaim Billah, R.E., Alorabi, A.Q., Alnaam, Y.A:, Algethami, F.K., Bahsis, L., Jawad, A.H., Wasilewska, M., and López-Maldonado, E.A. (2024). A novel chitosan-alginate@Fe/Mn mixed oxide nanocomposite for highly efficient removal of Cr (VI) from wastewater: Experiment and adsorption mechanism, International Journal of Biological Macromolecules, 263(2), 129989.
  • ASTM D1687-17, (2017). Standard Test Methods for Chromium in Water, ASTM International, West Conshohocken, PA.
  • Anah L., and Astrini, N. (2017). IOP Conference Series, Earth and Environmental Science, 60 012010.
  • Aytas, Ş., Turkozu D.A. ve Gok, C. (2011). Biosorption of uranium(VI) by bi-functionalized low cost biocomposite adsorbent, Desalination, 280, 354–362.
  • Bajpai, J., Shrivastava, R., and Bajpai A.K. (2004). Dynamic and equilibrium studies on adsorption of Cr (VI) ions onto binary bio-polymeric beads of cross linked alginate and gelatin. Colloids Surf. A: Physicochem. Eng. Aspects, 236 (1–3) 81-90.
  • Bayramoğlu, G., Çelik, G., Yalçın, E., Yılmaz, M. ve Arıca, M.Y. (2005). Modification of surface properties of Lentinus sajor-caju mycelia by physical and chemical methods: evaluation of their Cr6+ removal efficiencies from aqueous medium. Journal of Hazardous Materials, 119 (1–3) 219-229.
  • Donat, 2024. Uranyum(VI) İyonlarının Kula Volkaniti Üzerine Adsorpsiyonu. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 11(1), 93-103.
  • Edebali, S. ve Pehlivan, E. (2010). Evaluation of Amberlite IRA96 and Dowex 1×8 ion-exchange resins for the removal of Cr (VI) from aqueous solution, Chemical Engineering Journal, 161 (1–2), 161-166.
  • Fang, Y., Yang, K., Zhang, Y., Peng, C., Robledo-Cabrera, A., and López-Valdivieso (2021). A. Highly surface activated carbon to remove Cr (VI) from aqueous solution with adsorbent recycling, Environmental Research, 197, 111151.
  • Freundlich, H. M. F., (1906). Over the Adsorption in Solution. Journal of Physical Chemistry, 57, 385-470.
  • Gaikwad, M.S. and Balomajumder, C. (2017). Simultaneous rejection of fluoride and Cr (VI) from synthetic fluoride-Cr (VI) binary water system by polyamide flat sheet reverse osmosis membrane and prediction of membrane performance by CFSK and CFSD models, Journal of Molecular Liquids, 234, 194-200.
  • Gardea-Torresdey, J.L., Tiemann, K.J. Armendariz, V., Bess-Oberto, L., Chianelli, R.R., Rios, J., Parsons, J.G., and Gamez, G. (2000). Characterisation of Cr (VI) binding and reduction to Cr (III) by the agricultural by products of Avena monida (Oat) biomass, Journal of Hazardous Materials, B80, 175–188.
  • Gu, D., Liu, Y., Li, X., Zhu, H., Cui, Y., Yang, W. And Hao, J. (2023). Porphyrin-based metal–organic frameworks loaded with Ag nanoparticles and their nanofibrous filters for the photocatalytic reduction of Cr (VI), Applied Surface Science, 614, 156192.
  • Karthikeyan, T., Rajgopal, S., and Miranda, L.R. (2005). Chromium (VI) adsorption from aqueous solution by Hevea brasiliensis sawdust activated carbon. Journal of Hazardous Materials, 124 (1–3) 192-199.
  • Khan, S. A., Rehman, R., and Khan, M. A. (1995). Adsorption of chromium (III), chromium (VI) and silver (I) on bentonite. Waste Management, 15(4), 271-282.
  • Langmuir, I. (1918). The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. Journal of the American Chemical Society, 40(9), 1361-1403.
  • Li, W., Zhang, C., Wei, X., Zhang, H.,Han, M., Sun, W., and Li, W. (2022) Efficient resource treatment of hexavalent chromium wastewater based on lead carbonate (cerussite)-induced precipitation separation, Process Safety and Environmental Protection, 165, 475-486.
  • Lin, C., Qiao, S., Luo, W., Liu, Y., Liu, D., Li, X., and Liu, M. (2014). Thermodynamics, kinetics, and regeneration studies for adsorption of Cr(IV) from aqueous solutions using modified cellulose as adsorbent. BioResources 9(4), 6998-7017.
  • Malkoç, E., Nuhoğlu Y. ve Dündar, M. (2006). Adsorption of chromium(VI) on pomace—An olive oil industry waste: Batch and column studies. Journal of Hazardous Materials, 138(1), 2, 142-151.
  • Masuku, M., Nure, J.F., Atagana, H.I., Hlongwa, N., and Nkambule, T.T.I. (2024). Pinecone biochar for the Adsorption of chromium (VI) from wastewater: Kinetics, thermodynamics, and adsorbent regeneration, Environmental Research, 258,119423.
  • Miretzky, P., Cirelli, A.F. (2010). Cr (VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review, Journal of Hazardous Materials, 180 (1-3), 1-19.
  • Mohan, D., Singh, K.P., and Singh, V.K. (2005). Removal of hexavalent chromium from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth. Ind. Eng. Chem. Res., 44, 1027-1042.
  • Nizam, T., Krishnan, K.A., Joseph, A., and Krishnan, R.R. (2024). Isotherm, kinetic and thermodynamic modelling of liquid phase adsorption of the heavy metal ions Zn(II), Pb(II) and Cr (VI) onto MgFe2O4 nanoparticles, Groundwater for Sustainable Development, 25, 101120.
  • Pakade, V.E., Tavengwab, N.T., and Madikizelac, L.M. (2019). Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods, Royal Society of Chemistry Advances, 9, 26142.
  • Park, D., Yun, Y. S., and Park, J. M. (2010). The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering, 15(1), 86–102.
  • Ramazanoğlu, D., Mohammed, Z.A., Drbas, S.A. and Khalid, M. (2023). Synthesis of Activated Carbon from Different Biomasses, Şırnak University Journal Of Sciences, 3(2), 24-33.
  • Rao, M., Parwate, A.V., and Bhole, A.G. (2002). Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash. Waste Management, 22(7), 821-830.
  • Su, M., Fang, Y., Li, B., Yin, W., Gu, J., Liang, H., Li, P., and Wu, J. (2019). Enhanced hexavalent chromium removal by activated carbon modified with micro-sized goethite using a facile impregnation method, Science of The Total Environment, 647, 47–56.
  • Tewari, N., Vasudevan, P., and Guha, B.K. (2005). Study on biosorption of Cr (VI) by Mucor hiemalis, Biochemical Engineering Journal, 23(2), 185-192.
  • Wang, H., Wang, W., Zhou, S., and Gao, X. (2023). Adsorption mechanism of Cr (VI) on woody-activated carbons, Heliyon, 9 e13267.
  • Yu, F., Cen, L., Lei, C., Zhu, F., Zhou, L., Zhu, H. and Yu,B. (2023). Fabrication of recyclable UiO-66-NH2/PVDF hybrid fibrous membrane for Cr (VI) removal in wastewater, Journal of Industrial and Engineering Chemistry, 123, 104-115.
  • Zhou, L., Liu, Y., Liu, S., Yin, Y., Zeng, G., Tan, X. Hu, X., Hu, X., Jiang, L., Ding, Y., and Huang, X. (2016). Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures. Bioresource Technology, 218, 351–359.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Physical Chemistry (Other)
Journal Section Articles
Authors

Kadriye Esen Erden 0000-0002-6108-9489

Publication Date December 15, 2024
Submission Date August 1, 2024
Acceptance Date December 13, 2024
Published in Issue Year 2024 Volume: 14 Issue: 4

Cite

APA Esen Erden, K. (2024). Krom(VI) İyonlarının Adsorpsiyonunda Deniz Çayırlarından Üretilen Aktif Karbonun Kullanımı. Karadeniz Fen Bilimleri Dergisi, 14(4), 2128-2142. https://doi.org/10.31466/kfbd.1526347