Research Article
BibTex RIS Cite

Cerebral Oxymeter Changes and Clinical Outcomes at Different Hypothermic Levels During Cardiopulmonary Bypass in Pediatric Patients

Year 2018, Volume: 21 Issue: 3, 217 - 224, 02.12.2018

Abstract

Introduction:
Cardiopulmonary bypass (CPB) may
not provide sufficient tissue perfusion. Hypothermia is used to protect the
organs, especially the brain and heart, from this perfusion insufficiency. We
investigated the effect of different hypothermic levels on cerebral oxygenation
during CPB by using a cerebral oxymeter.



Patients
and Methods:
The study
included 30 consecutive pediatric patients with congenital heart disease who
were planned to be operated on in the year 2012. The mean age was 41.83 ± 39.96
months (2-156 months), with 19 males. Children were divided into three groups
by different hypothermic levels at CPB (32°C, 30°C, and 28°C). The measurements
were made five times: before anesthesia induction (baseline values), during
cooling (34°C), at the coldest value (first group 32°C, second group 30°C,
third group 28°C), during rewarming (34°C), and at the end of rewarming
(37°C-38°C). Cerebral-oxygen saturation, arterial-oxygen saturation, arterial
carbon dioxide pressure, mean arterial pressure, pH, lactate, base excess, and
hematocrit measurements were made for all patients, and mean values were
calculated for each group.



Results:
There were
no significant differences between the 32°C, 30°C, and 28°C groups (p>
0.05). When comparing change in cerebral-oxygen saturation values with the
other parameters’ changes between the periods, mean arterial pressure, and
hematocrit changes showed noteworthy similarities. However, no relationship had
been found between the other parameters and cerebral-oxygen saturation.



Conclusion:
In our
study, it was observed that cerebral oxygenation had not changed significantly
at different hypothermic degrees of moderate levels during CPB. The highest
temperature level of moderate hypothermic degrees (32°C instead of 28°C) was
secure enough. This might be more advantageous to avoid the possible negative
effects of hypothermia. Close monitoring of the cerebral oxygenation with
cerebral oximetry may play an important role in ensuring patients’ safety.

References

  • 1. Mault JR, Ohtake S, Klingensmith ME, Heinle JS, Greeley WJ, Ungerleider RM. Cerebral metabolism and circulatory arrest: effects of duration and strategies for protection. Ann Thorac Surg 1993;55:57-63.
  • 2. McCullough JN, Zhang N, Reich DL, Juvonen TS, Klein JJ, Spielvogel D, et al. Cerebral metabolic suppression during hypothermic circulatory arrest in humans. Ann Thorac Surg 1999;67:1895-9.
  • 3. Edmonds H, Rodriguez R, Audenaert S, Austin EH, Pollock SB, Ganzel BL. The role of neuromonitoring in cardiovascular surgery. J Cardiothorac Vasc Anesth 1996;10:15-23.
  • 4. Tekin S, Soybir N, Arat S. Pediyatrik kardiyak anestezi. Kalp-damar cerrahisi. Kısım: Pediyatrik kalp cerrahisi. Paç M (ed). Ankara: MN Medikal ve Nobel Tıp Yayınları, 2012; 5:11-3.
  • 5. Clark JB, Barnes ML, Undar A, Myers JL. Multimodality neuromonitoring for pediatric cardiac surgery: our approach and a critical appraisal of the available evidence. World J Pediatr Congenit Heart Surg 2012;3:87-95.
  • 6. Hu Z, Xu L, Zhu Z, Seal R, McQuillan PM. Effects of hypothermic cardiopulmonary bypass on internal jugular bulb venous oxygen saturation, cerebral oxygen saturation, and bispectral index in pediatric patients undergoing cardiac surgery: a prospective study. Medicine (Baltimore) 2016;95:e2483.
  • 7. Austin EH, Edmonds HL, Auden SM, Seremet V, Niznik G, Sehic A, et al. Benefit of neurophysiologic monitoring for pediatric cardiac surgery. J Thorac Cardiovasc Surg 1997;114:707-15, 717.
  • 8. Çelebioğlu B , Özer E. Kardiyopulmoner by-pass ve sistemik inflamatuvar yanıt. Hacettepe Tıp Dergisi 2004;35:18-26.
  • 9. Yalçınbaş YK, Sarıoğlu T. Pediyatrik kardiyopulmoner bypass ve miyokard korunması. Paç M (ed). Kalp-damar cerrahisi kitabı. 2012.
  • 10. Edmunds LH, Hessel EA, Colman RW, Menasche P, Hammon JW. Extracorporeal circulation. In: Edmunds LH, Cohn LH (ed). Cardiac surgery in the adult. New York: McGraw-Hill Companies, 2003:315-87.
  • 11. Cook DJ. Neurologic effects. In: Gravlee GP, Davis RF, Kurusz M, Utley J (eds). Cardiopulmonary bypass principles and practice. 2nd ed. Lippincott Williams & Wilkins, 2000:403-31.
  • 12. Schell RM, Kern FH, Greeley WJ, Schulman SR, Frasco PE, Croughwell ND, et al. Cerebral blood flow and metabolism during cardiopulmonary bypass. Aneth Analg 1993;76:849.
  • 13. Chong SY, Chow MY, Kang DS, Sin YK, Sim EK, Ti LK. Deep hypothermic circulatory arrest in adults undergoing aortic surgery: local experience. Ann Acad Med Singapore 2004:33;289-93.
  • 14. Badner NH, Murkin JM, Lock P. Difference in pH management and pulsatil/nonpulsatil perfusion during cardiopulmonary bypass do not influence renal function. Anesth Analg 1992;75:696.
  • 15. Mauroudis C. To pulse or not to pulse. Ann Thorac Surg 1978;25:259.
  • 16. Grossi EA, Connolly MW, Krieger KH. Quantification of pulsatil flow during cardiopulmonary bypass to permit direct comparison of the effectiveness of various types of pulsatil and nonpulsatil flow. Surgery 1985;98:547.
  • 17. Ehrlich MP, McCullough JN, Zhang N, Weisz DJ, Juvonen T, Bodian CA, et al. Effect of Hypothermia on cerebral blood flow and metabolism in the pig. Ann Thorac Surg 2002;73:191-7.
  • 18. Murphy GS, Hessel EA, Groom RC. Optimal perfusion during cardiopulmonary bypass: an evidence-based approach. Anesth Analg 2009;108:1394-417.
  • 19. Sungurtekin H, Boston US, Cook DJ. Bypass flow, mean arterial pressure, and cerebral perfusion during cardiopulmonary bypass in dogs. J Cardiothorac Vasc Anesth 2000;14:25-8.
  • 20. Gersten A. Peculiarities of brain’s blood flow: role of carbon dioxide. arXiv preprint arXiv 2011;1103.5491.
  • 21. Luz HL, Auler Junior JO. Temperature and acid-base balance in coronary bypass grafting with cardiopulmonary bypass, under hypothermia and normothermia. Rev Bras Anestesiol 2002;52:2:197-208.
  • 22. Duebener LF, Sakamoto T, Hatsuoka S, Stamm C, Zurakowski D, Vollmar B, et al. Effects of hematocrit on cerebral microcirculation and tissue oxygenation during deep hypothermic bypass. Circulation 2001;104:I260-4.
  • 23. Jonas RA, Wypij D, Roth SJ, Bellinger DC, Visconti KJ, du Plessis AJ, et al. The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: results of a randomized trial in infants. J Thorac Cardiovasc Surg 2003;126:1765-74.
  • 24. Shin’oka T, Shum-Tim D, Jonas RA, Lidov HGW, Laussen PC, Miura T, et al. Higher hematocrit improves cerebral outcome after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg 1996;112:1610-20.
  • 25. Kusunoki M, Kimura K, Nakamura M, Isaka Y, Yoneda S, Abe H. Effects of hematocrit variations on cerebral blood flow and oxygen transport in ischemic cerebrovascular disease. J Cereb Blood Flow Metab 1981;1:413-7.
  • 26. Hino A, Ueda S, Mizukawa N, Imahori Y, Tenjin H. Effect of hemodilution on cerebral hemodynamics and oxygen metabolism. Stroke 1992;23:423-6.

Pediatrik Hastalarda Kardiyopulmoner Baypas Sırasında Farklı Hipotermik Seviyelerinde Serebral Oksimetri Değişimi ve Klinik Sonuçları

Year 2018, Volume: 21 Issue: 3, 217 - 224, 02.12.2018

Abstract

Giriş: Kardiyopulmoner baypas (KPB) yeterli doku
perfüzyonu sağlayamayabilir. Organları bu perfüzyon yetersizliğinden korumak
için hipotermi kullanılır. Biz çalışmamızda farklı hipotermik seviyelerin
serebral oksijenasyona etkisini serebral oksimetre kullanarak araştırmayı
amaçladık.



Hastalar ve
Yöntem:
Çalışmaya konjenital kalp cerrahisi uygulanan 30
pediatrik hasta dahil edildi. Ortalama yaş 41.83 ± 39.96 ay (2-156 ay), 19 erkek.
Hastalar KPB’deki farklı hipotermik seviyelere göre üç gruba ayrıldı. Ölçümler
beş farklı aşamada yapıldı: anestezi indüksiyonu öncesi, soğuma aşamasında
(34°C), en son soğuma değerinde (1. Grup 32°C, 2. Grup 30°C, 3. Grup 28°C), ısınma
aşamasında (34°C), ısınmanın sonunda (37-38°C). Her hasta için serebral oksijen
satürasyonu, arteriyel oksijen satürasyonu, arteriyel karbondioksit basıncı,
ortalama arter basıncı, pH, laktat, baz fazlası, hematokrit ölçümleri yapıldı
ve ortalama değerler her grup için hesaplandı.



Bulgular: Kaydedilen değerlerin karşılaştırıldığında 32°C, 30°C ve
28°C gruplarında anlamlı fark yoktu (p> 0.05). Serebral oksijen
satürasyonundaki değişim ile diğer parametrelerdeki değişimler ile ortalama
arter basıncı ve hematokrit değerlerindeki değişimler kayda değer benzerlik
göstermekteydi. Bununla beraber, serebral oksijen satürasyonu ile diğer
parametreler arasında ilişki bulunamadı.



Sonuç: Serebral oksijenasyonun farklı hipotermik seviyelerde değişmediği göz
önüne alındığında, sıcaklık seviyesini mümkün olduğunca korumanın hipoterminin
olası negatif etkilerinden korumada önemli olduğunu düşünmekteyiz. Ayrıca
serebral oksijenasyonun serebral oksimetre ile yakın monitörizasyonu hastanın
güvenliğini sağlamada önemli rol oynayabilir.

References

  • 1. Mault JR, Ohtake S, Klingensmith ME, Heinle JS, Greeley WJ, Ungerleider RM. Cerebral metabolism and circulatory arrest: effects of duration and strategies for protection. Ann Thorac Surg 1993;55:57-63.
  • 2. McCullough JN, Zhang N, Reich DL, Juvonen TS, Klein JJ, Spielvogel D, et al. Cerebral metabolic suppression during hypothermic circulatory arrest in humans. Ann Thorac Surg 1999;67:1895-9.
  • 3. Edmonds H, Rodriguez R, Audenaert S, Austin EH, Pollock SB, Ganzel BL. The role of neuromonitoring in cardiovascular surgery. J Cardiothorac Vasc Anesth 1996;10:15-23.
  • 4. Tekin S, Soybir N, Arat S. Pediyatrik kardiyak anestezi. Kalp-damar cerrahisi. Kısım: Pediyatrik kalp cerrahisi. Paç M (ed). Ankara: MN Medikal ve Nobel Tıp Yayınları, 2012; 5:11-3.
  • 5. Clark JB, Barnes ML, Undar A, Myers JL. Multimodality neuromonitoring for pediatric cardiac surgery: our approach and a critical appraisal of the available evidence. World J Pediatr Congenit Heart Surg 2012;3:87-95.
  • 6. Hu Z, Xu L, Zhu Z, Seal R, McQuillan PM. Effects of hypothermic cardiopulmonary bypass on internal jugular bulb venous oxygen saturation, cerebral oxygen saturation, and bispectral index in pediatric patients undergoing cardiac surgery: a prospective study. Medicine (Baltimore) 2016;95:e2483.
  • 7. Austin EH, Edmonds HL, Auden SM, Seremet V, Niznik G, Sehic A, et al. Benefit of neurophysiologic monitoring for pediatric cardiac surgery. J Thorac Cardiovasc Surg 1997;114:707-15, 717.
  • 8. Çelebioğlu B , Özer E. Kardiyopulmoner by-pass ve sistemik inflamatuvar yanıt. Hacettepe Tıp Dergisi 2004;35:18-26.
  • 9. Yalçınbaş YK, Sarıoğlu T. Pediyatrik kardiyopulmoner bypass ve miyokard korunması. Paç M (ed). Kalp-damar cerrahisi kitabı. 2012.
  • 10. Edmunds LH, Hessel EA, Colman RW, Menasche P, Hammon JW. Extracorporeal circulation. In: Edmunds LH, Cohn LH (ed). Cardiac surgery in the adult. New York: McGraw-Hill Companies, 2003:315-87.
  • 11. Cook DJ. Neurologic effects. In: Gravlee GP, Davis RF, Kurusz M, Utley J (eds). Cardiopulmonary bypass principles and practice. 2nd ed. Lippincott Williams & Wilkins, 2000:403-31.
  • 12. Schell RM, Kern FH, Greeley WJ, Schulman SR, Frasco PE, Croughwell ND, et al. Cerebral blood flow and metabolism during cardiopulmonary bypass. Aneth Analg 1993;76:849.
  • 13. Chong SY, Chow MY, Kang DS, Sin YK, Sim EK, Ti LK. Deep hypothermic circulatory arrest in adults undergoing aortic surgery: local experience. Ann Acad Med Singapore 2004:33;289-93.
  • 14. Badner NH, Murkin JM, Lock P. Difference in pH management and pulsatil/nonpulsatil perfusion during cardiopulmonary bypass do not influence renal function. Anesth Analg 1992;75:696.
  • 15. Mauroudis C. To pulse or not to pulse. Ann Thorac Surg 1978;25:259.
  • 16. Grossi EA, Connolly MW, Krieger KH. Quantification of pulsatil flow during cardiopulmonary bypass to permit direct comparison of the effectiveness of various types of pulsatil and nonpulsatil flow. Surgery 1985;98:547.
  • 17. Ehrlich MP, McCullough JN, Zhang N, Weisz DJ, Juvonen T, Bodian CA, et al. Effect of Hypothermia on cerebral blood flow and metabolism in the pig. Ann Thorac Surg 2002;73:191-7.
  • 18. Murphy GS, Hessel EA, Groom RC. Optimal perfusion during cardiopulmonary bypass: an evidence-based approach. Anesth Analg 2009;108:1394-417.
  • 19. Sungurtekin H, Boston US, Cook DJ. Bypass flow, mean arterial pressure, and cerebral perfusion during cardiopulmonary bypass in dogs. J Cardiothorac Vasc Anesth 2000;14:25-8.
  • 20. Gersten A. Peculiarities of brain’s blood flow: role of carbon dioxide. arXiv preprint arXiv 2011;1103.5491.
  • 21. Luz HL, Auler Junior JO. Temperature and acid-base balance in coronary bypass grafting with cardiopulmonary bypass, under hypothermia and normothermia. Rev Bras Anestesiol 2002;52:2:197-208.
  • 22. Duebener LF, Sakamoto T, Hatsuoka S, Stamm C, Zurakowski D, Vollmar B, et al. Effects of hematocrit on cerebral microcirculation and tissue oxygenation during deep hypothermic bypass. Circulation 2001;104:I260-4.
  • 23. Jonas RA, Wypij D, Roth SJ, Bellinger DC, Visconti KJ, du Plessis AJ, et al. The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: results of a randomized trial in infants. J Thorac Cardiovasc Surg 2003;126:1765-74.
  • 24. Shin’oka T, Shum-Tim D, Jonas RA, Lidov HGW, Laussen PC, Miura T, et al. Higher hematocrit improves cerebral outcome after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg 1996;112:1610-20.
  • 25. Kusunoki M, Kimura K, Nakamura M, Isaka Y, Yoneda S, Abe H. Effects of hematocrit variations on cerebral blood flow and oxygen transport in ischemic cerebrovascular disease. J Cereb Blood Flow Metab 1981;1:413-7.
  • 26. Hino A, Ueda S, Mizukawa N, Imahori Y, Tenjin H. Effect of hemodilution on cerebral hemodynamics and oxygen metabolism. Stroke 1992;23:423-6.
There are 26 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Original Investigations
Authors

Tanıl Özer

Hakan Ceyran This is me

Publication Date December 2, 2018
Published in Issue Year 2018 Volume: 21 Issue: 3

Cite

Vancouver Özer T, Ceyran H. Cerebral Oxymeter Changes and Clinical Outcomes at Different Hypothermic Levels During Cardiopulmonary Bypass in Pediatric Patients. Koşuyolu Heart Journal. 2018;21(3):217-24.