Research Article
BibTex RIS Cite

ÖN ÇAPRAZ BAĞ YARALANMASI İÇİN BİR RİSK FAKTÖRÜ OLARAK TİBİAL TÜBERKÜL - TROKLEAR OLUK MESAFESİNİN VE PATELLAR YÜKSEKLİĞİN DEĞERLENDİRİLMESİ

Year 2022, , 166 - 170, 20.04.2022
https://doi.org/10.18229/kocatepetip.832371

Abstract

AMAÇ: Bu çalışmada Ön çapraz bağ ( ÖÇB)'ı sağlam ve ÖÇB'si kopuk olan hastalar arasındaki patellar yükseklik ve tibial tüberkül troklear oluk mesafesi (TT-TGd) arasındaki farkların değerlendirilmesi amaçlanmıştır.
GEREÇ VE YÖNTEM: 18-40 yaşları arasında toplam 2019 hasta (1015 ÖÇB kopuk ve 1004 ÖÇB sağlam) çalışmaya dahil edildi. Patellar yükseklik ölçümünü belirlemek için Insall Salvati indeksi (ISI) kullanıldı. TT-TGd, aksiyel manyetik rezonans görüntüleri ile ölçüldü. İki ortopedi cerrahı, gözlemci içi ve gözlemciler arası güvenilirliği değerlendirmek için bağımsız olarak iki hafta ara ile 50 hastanın görüntüsünü inceledi. Ortalama patellar yükseklik ve TT-TGd ölçümleri ÖÇB'si kopuk olan hasta grubu ve sağlam ÖÇB'si olan kontrol grubu ile karşılaştırıldı.
BULGULAR: Gözlemci içi ve gözlemciler arası uyum her iki ölçüm için de mükemmeldi (tüm ölçümler için p=0.001 ve k> 0.850). Patellar yükseklik ve TT-TGd, ÖÇB kopuk olan hastalarda kontrol grubuna göre anlamlı olarak daha yüksekti (sırasıyla 1.09 ± 0.37 ile 1.06 ± 0.56, p<0.001, 10.0 ± 3.3'e karşı 8.5 ± 3.0, p<0.001). ISI kadınlarda erkeklere göre anlamlı olarak daha yüksekti (1.13'e karşı 1.07, p<0.001). TT-TGd açısından cinsiyetler arasında anlamlı fark yoktu (9.5'e 9.3, p=0.792).
SONUÇ: ÖÇB'si kopuk olan hastalarda patella yüksekliği ve TT-TGd anlamlı olarak artmış olmasına rağmen, bu farklılıklar normal aralıkta oldukları için klinik olarak önemli değildir.

References

  • 1. Hashemi J, Chandrashekar N, Mansouri H, et al. Shallow medial tibial plateau and steep medial and lateral tibialslopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med. 2010;38(1):54-62.
  • 2. Rodriguez MJ, Garcia EJ, Dickens JF. Primary and Posttraumatic Knee Osteoarthritis in the Military. J Knee Surg. 2019;32(2):134-7.
  • 3. Brandon ML, Haynes PT, Bonamo JR, et al. The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy. 2006;22:894-9.
  • 4. Tan SHS, Kripesh A, Chan CX, Krishna L. Gender Differences in Intra-articular and Extra-articular Injuries Associated with Acute Anterior Cruciate Ligament Ruptures. J Knee Surg. 2019;32(7):616-9.
  • 5. Stijak L, Herzog RF, Schai P. Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? A case-control study. Knee Surg Sports Traumatol Arthrosc. 2008;16:112–7.
  • 6. LaPrade RF, Burnett QM. Femoral intercondylar notch stenosis and correlation to anterior cruciate ligament injuries: a prospective study. Am J Sports Med.1994;22:198-203.
  • 7. Barahona M, Guzman M, Barrientos C, et al. The Distance between Tibial Tubercle and Trochlear Groove Correlates with Knee Articular Torsion. J Knee Surg. 2021;34(9):918-923.
  • 8. Bayhan AI, Kırat A, Alpay Y, et al. Tibial tubercle–trochlear groove distance and angle are higher in children with patellar instability. Knee SurgSports Traumatol Arthrosc. 2018;26(12):3566-71.
  • 9. Simmons E, Cameron JC. Patella alta and recurrent dislocation of the patella. Clin Orthop Relat Res. 1992;(274):265–9.
  • 10. Escala JS, Mellado JM, Olona M, et al. Objective patellar instability: MR-based quantitative assessment of potentially associated anatomical features. Knee Surg Sports Traumatol Arthrosc. 2006;14(3):264–72 .
  • 11. Lin CF, Wu JJ, Chen TS, et al. Comparison of the Insall-Salvati ratio of the patella in patients with and without an ACL tear. Knee Surg Sports Traumatol Arthrosc. 2005;13:8–11.
  • 12. Degnan AJ, Maldjian C, Adam RJ, et al. Di Domenica M. Comparison of Insall-Salvati ratios in children with an acute anterior cruciate ligament tear and a matched control population. AJR Am J Roentgenol. 2015;204(1):161-6.
  • 13. Schoettle PB, Zanetti M, Seifert B, et al. The tibial tuberosity-trochlear groove distance; a comparative study between CT and MRI scanning. Knee. 2006;13:26–31.
  • 14. Insall J, Salvati E. Patella position in the normal knee joint. Radiology.1971;101(1):101–10.
  • 15. Myer GD, Ford KR, Paterno MV, et al. The effect of generalized joint laxity on risk of anterior cruciate ligament injury in young female athletes. Am J Sports Med. 2008;36:1073–80.
  • 16. Renstrom P, Ljungqvist A, Arendt E, et al. Non-contact ACL injuries in female athletes: an International Olympic Committee current concepts statement. Br J Sports Med. 2008;42(6):394–12.
  • 17. Shambaugh JP, Klein A, Herbert JH. Structural measures as predictors of injury in basketball players. Med Sci Sports Exerc. 1991;23:522–7.
  • 18. Muneta T, Takakuda K, Yamamoto H. Intercondylar notch width and its relation to the configuration and cross-sectional area of the anterior cruciate ligament. Am J Sports Med. 1997;25:69–72.
  • 19. Charlton WP, St John TA, Ciccotti MG, et al. Differences in femoral notch anatomy between men and women: a magnetic resonance imaging study. Am J Sports Med. 2002;30: 329-33.
  • 20. Dejour H, Walch G, Nove-Josserand L, et al. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sport Traumatol Arthrosc. 1994;2:19-26.
  • 21. Paiva M, Blond L, Holmich P, et al. Quality assessment of radiological measurements of trochlear dysplasia; a literature review. Knee Surg Sport Traumatol Arthrosc. 2017;26(3):746–55.
  • 22. Alemparte J, Ekdahl M, Burnier L, et al. Patellofemoral evaluation with radiographs and computed tomography scans in 60 knees of asymptomatic subjects. Arthroscopy. 2007;23:170–7.
  • 23. Anley CM, Morris GV, Saithna A, et al. Defining the role of the tibial tubercle–trochlear groove and tibial tubercle-posterior cruciate ligament distances in the workup of patients with patellofemoral disorders. Am J Sport Med. 2015;43:1348–53.
  • 24. Hochreiter B, Michael T, Amsler F, et al. Highly variable tibial tubercle–trochlear groove distance (TT–TG) in osteoarthritic knees should be considered when performing TKA. Knee SurgSports Traumatol Arthrosc. 2019;27(5):1403-9.
  • 25. Thaunat M, Erasmus PJ. Recurrent patellar dislocation after medial patellofemoral ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2008;16:40–3

EVALUATION OF THE TIBIAL TUBERCLE - TROCHLEAR GROOVE DISTANCE AND PATELLAR HEIGHT AS A RISK FACTOR FOR ANTERIOR CRUCIATE LIGAMENT INJURY

Year 2022, , 166 - 170, 20.04.2022
https://doi.org/10.18229/kocatepetip.832371

Abstract

OBJECTIVE: This study aimed to evaluate the differences in patellar height and tibial tubercle- trochlear groove distance (TT-TGd) between patients with an intact anterior cruciate ligament (ACL) and ruptured ACL.
MATERIAL AND METHODS: A total of 2019 patients (1015 with ruptured ACL and 1004 with an intact ACL) aged between 18-40 years were included. The Insall Salvati index (ISI) was used to determine the patellar height measurement. The TT-TGd was measured based on axial magnetic resonance images. Two orthopedic surgeons independently studied 50 patients’ images for two weeks to assess intra-observer and inter-observer reliability. The mean patellar height and TT-TGd measurements were compared between patients with ruptured ACL and those with an intact ACL.
RESULTS: Interobserver and intraobserver agreement were excellent for both measurements (p = 0.001 and k> 0.850 for all measurements). Patellar height and TT-TGd were significantly higher in ACL ruptured patients than in the control group (1.09± 0.37 vs. 1.06± 0.56, p<0.001, 10.0± 3.3 vs. 8.5± 3.0, p<0.001, respectively). The ISI was significantly higher in women than in men (1.13 vs. 1.07, p<0.001). There was no significant difference between the sexes regarding the TT-TGd (9.5 vs. 9.3, p=0.792).
CONCLUSIONS: Although significantly increased in patellar height and TT–TGd was detected in patients with ruptured ACL, these differences are not clinically important because they are in the normal range.

References

  • 1. Hashemi J, Chandrashekar N, Mansouri H, et al. Shallow medial tibial plateau and steep medial and lateral tibialslopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med. 2010;38(1):54-62.
  • 2. Rodriguez MJ, Garcia EJ, Dickens JF. Primary and Posttraumatic Knee Osteoarthritis in the Military. J Knee Surg. 2019;32(2):134-7.
  • 3. Brandon ML, Haynes PT, Bonamo JR, et al. The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy. 2006;22:894-9.
  • 4. Tan SHS, Kripesh A, Chan CX, Krishna L. Gender Differences in Intra-articular and Extra-articular Injuries Associated with Acute Anterior Cruciate Ligament Ruptures. J Knee Surg. 2019;32(7):616-9.
  • 5. Stijak L, Herzog RF, Schai P. Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? A case-control study. Knee Surg Sports Traumatol Arthrosc. 2008;16:112–7.
  • 6. LaPrade RF, Burnett QM. Femoral intercondylar notch stenosis and correlation to anterior cruciate ligament injuries: a prospective study. Am J Sports Med.1994;22:198-203.
  • 7. Barahona M, Guzman M, Barrientos C, et al. The Distance between Tibial Tubercle and Trochlear Groove Correlates with Knee Articular Torsion. J Knee Surg. 2021;34(9):918-923.
  • 8. Bayhan AI, Kırat A, Alpay Y, et al. Tibial tubercle–trochlear groove distance and angle are higher in children with patellar instability. Knee SurgSports Traumatol Arthrosc. 2018;26(12):3566-71.
  • 9. Simmons E, Cameron JC. Patella alta and recurrent dislocation of the patella. Clin Orthop Relat Res. 1992;(274):265–9.
  • 10. Escala JS, Mellado JM, Olona M, et al. Objective patellar instability: MR-based quantitative assessment of potentially associated anatomical features. Knee Surg Sports Traumatol Arthrosc. 2006;14(3):264–72 .
  • 11. Lin CF, Wu JJ, Chen TS, et al. Comparison of the Insall-Salvati ratio of the patella in patients with and without an ACL tear. Knee Surg Sports Traumatol Arthrosc. 2005;13:8–11.
  • 12. Degnan AJ, Maldjian C, Adam RJ, et al. Di Domenica M. Comparison of Insall-Salvati ratios in children with an acute anterior cruciate ligament tear and a matched control population. AJR Am J Roentgenol. 2015;204(1):161-6.
  • 13. Schoettle PB, Zanetti M, Seifert B, et al. The tibial tuberosity-trochlear groove distance; a comparative study between CT and MRI scanning. Knee. 2006;13:26–31.
  • 14. Insall J, Salvati E. Patella position in the normal knee joint. Radiology.1971;101(1):101–10.
  • 15. Myer GD, Ford KR, Paterno MV, et al. The effect of generalized joint laxity on risk of anterior cruciate ligament injury in young female athletes. Am J Sports Med. 2008;36:1073–80.
  • 16. Renstrom P, Ljungqvist A, Arendt E, et al. Non-contact ACL injuries in female athletes: an International Olympic Committee current concepts statement. Br J Sports Med. 2008;42(6):394–12.
  • 17. Shambaugh JP, Klein A, Herbert JH. Structural measures as predictors of injury in basketball players. Med Sci Sports Exerc. 1991;23:522–7.
  • 18. Muneta T, Takakuda K, Yamamoto H. Intercondylar notch width and its relation to the configuration and cross-sectional area of the anterior cruciate ligament. Am J Sports Med. 1997;25:69–72.
  • 19. Charlton WP, St John TA, Ciccotti MG, et al. Differences in femoral notch anatomy between men and women: a magnetic resonance imaging study. Am J Sports Med. 2002;30: 329-33.
  • 20. Dejour H, Walch G, Nove-Josserand L, et al. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sport Traumatol Arthrosc. 1994;2:19-26.
  • 21. Paiva M, Blond L, Holmich P, et al. Quality assessment of radiological measurements of trochlear dysplasia; a literature review. Knee Surg Sport Traumatol Arthrosc. 2017;26(3):746–55.
  • 22. Alemparte J, Ekdahl M, Burnier L, et al. Patellofemoral evaluation with radiographs and computed tomography scans in 60 knees of asymptomatic subjects. Arthroscopy. 2007;23:170–7.
  • 23. Anley CM, Morris GV, Saithna A, et al. Defining the role of the tibial tubercle–trochlear groove and tibial tubercle-posterior cruciate ligament distances in the workup of patients with patellofemoral disorders. Am J Sport Med. 2015;43:1348–53.
  • 24. Hochreiter B, Michael T, Amsler F, et al. Highly variable tibial tubercle–trochlear groove distance (TT–TG) in osteoarthritic knees should be considered when performing TKA. Knee SurgSports Traumatol Arthrosc. 2019;27(5):1403-9.
  • 25. Thaunat M, Erasmus PJ. Recurrent patellar dislocation after medial patellofemoral ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2008;16:40–3
There are 25 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Articles
Authors

Yakup Alpay 0000-0001-8448-5081

Atakan Ezici 0000-0003-1398-8575

Murat Önder 0000-0003-2268-4282

Abdulhamit Mısır 0000-0002-5270-1429

Canan Gönen Aydın 0000-0002-0926-1317

Avni İlhan Bayhan 0000-0001-8308-1309

Publication Date April 20, 2022
Acceptance Date May 31, 2021
Published in Issue Year 2022

Cite

APA Alpay, Y., Ezici, A., Önder, M., Mısır, A., et al. (2022). EVALUATION OF THE TIBIAL TUBERCLE - TROCHLEAR GROOVE DISTANCE AND PATELLAR HEIGHT AS A RISK FACTOR FOR ANTERIOR CRUCIATE LIGAMENT INJURY. Kocatepe Tıp Dergisi, 23(2), 166-170. https://doi.org/10.18229/kocatepetip.832371
AMA Alpay Y, Ezici A, Önder M, Mısır A, Gönen Aydın C, Bayhan Aİ. EVALUATION OF THE TIBIAL TUBERCLE - TROCHLEAR GROOVE DISTANCE AND PATELLAR HEIGHT AS A RISK FACTOR FOR ANTERIOR CRUCIATE LIGAMENT INJURY. KTD. April 2022;23(2):166-170. doi:10.18229/kocatepetip.832371
Chicago Alpay, Yakup, Atakan Ezici, Murat Önder, Abdulhamit Mısır, Canan Gönen Aydın, and Avni İlhan Bayhan. “EVALUATION OF THE TIBIAL TUBERCLE - TROCHLEAR GROOVE DISTANCE AND PATELLAR HEIGHT AS A RISK FACTOR FOR ANTERIOR CRUCIATE LIGAMENT INJURY”. Kocatepe Tıp Dergisi 23, no. 2 (April 2022): 166-70. https://doi.org/10.18229/kocatepetip.832371.
EndNote Alpay Y, Ezici A, Önder M, Mısır A, Gönen Aydın C, Bayhan Aİ (April 1, 2022) EVALUATION OF THE TIBIAL TUBERCLE - TROCHLEAR GROOVE DISTANCE AND PATELLAR HEIGHT AS A RISK FACTOR FOR ANTERIOR CRUCIATE LIGAMENT INJURY. Kocatepe Tıp Dergisi 23 2 166–170.
IEEE Y. Alpay, A. Ezici, M. Önder, A. Mısır, C. Gönen Aydın, and A. İ. Bayhan, “EVALUATION OF THE TIBIAL TUBERCLE - TROCHLEAR GROOVE DISTANCE AND PATELLAR HEIGHT AS A RISK FACTOR FOR ANTERIOR CRUCIATE LIGAMENT INJURY”, KTD, vol. 23, no. 2, pp. 166–170, 2022, doi: 10.18229/kocatepetip.832371.
ISNAD Alpay, Yakup et al. “EVALUATION OF THE TIBIAL TUBERCLE - TROCHLEAR GROOVE DISTANCE AND PATELLAR HEIGHT AS A RISK FACTOR FOR ANTERIOR CRUCIATE LIGAMENT INJURY”. Kocatepe Tıp Dergisi 23/2 (April 2022), 166-170. https://doi.org/10.18229/kocatepetip.832371.
JAMA Alpay Y, Ezici A, Önder M, Mısır A, Gönen Aydın C, Bayhan Aİ. EVALUATION OF THE TIBIAL TUBERCLE - TROCHLEAR GROOVE DISTANCE AND PATELLAR HEIGHT AS A RISK FACTOR FOR ANTERIOR CRUCIATE LIGAMENT INJURY. KTD. 2022;23:166–170.
MLA Alpay, Yakup et al. “EVALUATION OF THE TIBIAL TUBERCLE - TROCHLEAR GROOVE DISTANCE AND PATELLAR HEIGHT AS A RISK FACTOR FOR ANTERIOR CRUCIATE LIGAMENT INJURY”. Kocatepe Tıp Dergisi, vol. 23, no. 2, 2022, pp. 166-70, doi:10.18229/kocatepetip.832371.
Vancouver Alpay Y, Ezici A, Önder M, Mısır A, Gönen Aydın C, Bayhan Aİ. EVALUATION OF THE TIBIAL TUBERCLE - TROCHLEAR GROOVE DISTANCE AND PATELLAR HEIGHT AS A RISK FACTOR FOR ANTERIOR CRUCIATE LIGAMENT INJURY. KTD. 2022;23(2):166-70.

88x31.png
Bu Dergi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.