Research Article
BibTex RIS Cite

SIÇANLARDA KARACİĞER VE ÇİZGİLİ KAS BİLGİSAYARLI TOMOGRAFİ ATENÜASYONLARI İLE POST-MORTEM İNTERVAL TAYİNİ

Year 2023, Volume: 24 Issue: 3, 327 - 333, 13.07.2023
https://doi.org/10.18229/kocatepetip.1130250

Abstract

AMAÇ: Post-mortem interval (PMI) tayinini hedefleyen ölüm sonrası bilgisayarlı tomografik çalışmalara ilgi artmaktadır. Literatürde çoğu çalışma, kontrolsüz veya nispeten daha az kontrollü bir durumda yürütülmüştür. Bu çalışma, sıkı kontrollü çevresel koşullar altında PMI tahmininde karaciğer ve çizgili kasların bilgisayarlı tomografi atenüasyonlarının kullanılabilirliğini araştırmaktadır.
GEREÇ VE YÖNTEM: 30 Wistar Albino sıçanın ölümden sonraki ilk 30 dakikada ve post-mortem 12, 24, 36, 48, 72, 96, 120, 144 ve 168. saatte bilgisayarlı tomografi görüntüleri alındı. 0,12 cm2 ilgi alanında karaciğerin lateral lobları ve paraspinal kasın tekrarlayan atenüasyonları kaydedildi.
BULGULAR: Karaciğer ve paraspinal kasların atenüasyon değerleri, ölümden 12 saat sonra daha yüksek bulundu. Hem erkek (p=0,01) hem de dişi sıçanlarda (p=0,01) otopsiden 30 dakika sonra elde edilen görüntüler ile otopsiden 12 saat sonra elde edilen görüntüler arasında anlamlı fark gözlendi. PMI tayini için karaciğer ve kas dokusu için farklı atenüasyon eşik değerleri belirlendi."
SONUÇ: Önerilen model ile karaciğer ve çizgili kasların atenüasyon değerlerinin kullanımı, PMI tayini için faydalı bulunmuştur. Atenüasyonun eşik değerleri, özellikle karaciğer için, PMI sınırlandırılmasında kullanılabileceği anlaşılmıştır.

Supporting Institution

Hacettepe Üniversitesi

Project Number

THD-2017-11908

References

  • 1. Yıldırım MŞ, Sevinç S, Akçan R, et al. Use of Microbiological Methods in Postmortem Interval Estimation. Bullet Leg Med. 2015;20(1):56–9.
  • 2. Tumer AR, Karacaoglu E, Namli A, et al. Effects of different types of soil on decomposition: An experimental study. Leg Med. 2013;15(3):149–56.
  • 3. Thali MJ, Yen K, Schweitzer W, et al. Virtopsy, a New Imaging Horizon in Forensic Pathology: Virtual Autopsy by Postmortem Multislice Computed Tomography (MSCT) and Magnetic Resonance Imaging (MRI)-a Feasibility Study. J Forensic Sci. 2003;48(2):2002166.
  • 4. Ishida M, Gonoi W, Hagiwara K, et al. Postmortem changes of the thyroid on computed tomography., Leg Med. 2011;13(6):318-22.
  • 5. Kobayashi T, Shiotani S, Kaga K, et al. Characteristic signal intensity changes on postmortem magnetic resonance imaging of the brain. Jpn J Radiol. 2010;28(1):8–14.
  • 6. Barber JL, Hutchinson JC, Sebire NJ, Arthurs OJ. Pleural fluid accumulation detectable on paediatric post-mortem imaging: a possible marker of interval since death? Int J Legal Med . 2016;130(4):1003–10.
  • 7. Zerbini T, Da Silva LFF, Lobato Baptista PA, et al. Estimation of post mortem interval by tomographic images of intra-cardiac hypostasis. J Forensic Leg Med. 2016;38:111–5.
  • 8. Okuma H, Gonoi W, Ishida M, et al. Comparison of the cardiothoracic ratio between postmortem and antemortem computed tomography. Leg Med. 2017;24:86–91.
  • 9. Okuma H, Gonoi W, Ishida M, et al. Heart Wall Is Thicker on Postmortem Computed Tomography Than on Ante Mortem Computed Tomography: The First Longitudinal Study. PLoS One. 2013;8(9): e76026.
  • 10. Shiotani S, Kohno M, Ohashi N, et al. Dilatation of the heart on postmortem computed tomography (PMCT): Comparison with live CT. Radiat Med - Med Imaging Radiat Oncol. 2003;21(1):29–35.
  • 11. Okuma H, Gonoi W, Ishida M, et al. Comparison of attenuation of striated muscle between postmortem and antemortem computed tomography: Results of a longitudinal study. PLoS One. 2014;9(11):e111457.
  • 12. Takahashi N, Higuchi T, Shiotani M, et al. Intrahepatic gas at postmortem multislice computed tomography in cases of nontraumatic death. Jpn J Radiol. 2009;27(7):264–8.
  • 13. Okuma H, Gonoi W, Ishida M, et al. Comparison of volume and attenuation of the spleen between postmortem and antemortem computed tomography. Int J Legal Med. 2016;130(4):1081–7.
  • 14. Le Garff E, Mesli V, Marchand E, et al. Is bone analysis with μCT useful for short postmortem interval estimation? Int J Legal Med. 2018;132(1):269–77.
  • 15. Shirota G, Gonoi W, Ishida M, et al. Brain swelling and loss of gray and white matter differentiation in human postmortem cases by computed tomography. PLoS One. 2015;10(11):e0143848.
  • 16. Bayat AR, Koopmanschap D, Klein WM. Postmortem interval estimation: Value of postmortem cerebral CT. J Forensic Radiol Imaging. 2014;2(2):98.
  • 17. Shiotani S, Kohno M, Ohashi N, et al. Non-traumatic postmortem computed tomographic (PMCT) findings of the lung. Forensic Sci Int. 2004;139(1):39–48.
  • 18. Cocariu EA, Mageriu V, Stăniceanu F, et al. Correlations Between the Autolytic Changes and Postmortem Interval in Refrigerated Cadavers. Rom J Intern Med. 2016;54(2):105–12.
  • 19. Pittner S, Ehrenfellner B, Monticelli FC, et al. Postmortem muscle protein degradation in humans as a tool for PMI delimitation. Int J Legal Med. 2016;130(6):1547–55.
  • 20. Ishikawa N, Nishida A, Miyamori D, et al. Estimation of postmortem time based on aorta narrowing in CT imaging. J Forensic Leg Med. 2013;20(8):1075–7.
  • 21. Ishida M, Gonoi W, Hagiwara K, et al. Early postmortem volume reduction of adrenal gland: initial longitudinal computed tomographic study. Radiol Medica. 2015;120(7):662–9.
  • 22. Koopmanschap DHJLM, Bayat AR, Kubat B, et al. The radiodensity of cerebrospinal fluid and vitreous humor as indicator of the time since death. Forensic Sci Med Pathol. 2016;12(3):248–56.
  • 23. Wang J, Zheng J, Zhang J, et al. Estimation of Postmortem Interval Using the Radiological Techniques, Computed Tomography: A Pilot Study. J Forensic Sci Med. 2017;3(1):1–8.
  • 24. Iwamoto C, Ohuchida K, Okumura M, et al. Postmortem interval estimation using the animal model of postmortem gas volume changes. Leg Med. 2018 May 1;32:66–70.
  • 25. Fischer F, Grimm J, Kirchhoff C, et al. Postmortem 24-h interval computed tomography findings on intrahepatic gas development and changes of liver parenchyma radiopacity. Forensic Sci Int. 2012;214(1– 3):118–23.
  • 26. Colom B, Alcolea MP, Valle A, et al. Skeletal muscle of female rats exhibit higher mitochondrial mass and oxidative-phosphorylative capacities compared to males. Cell Physiol Biochem. 2007;19(1–4):205–12.
  • 27. Bazhan N, Jakovleva T, Feofanova N, et al. Sex Differences in Liver, Adipose Tissue, and Muscle Transcriptional Response to Fasting and Refeeding in Mice. Cells. 2019;8(12):1529.
  • 28. Miller I, Diepenbroek C, Rijntjes E, et al. Gender specific differences in the liver proteome of rats exposed to short term and low-concentration hexabromocyclododecane (HBCD). Toxicol Res (Camb). 2016;5(5):1273–83.

POST-MORTEM INTERVAL ESTIMATION BASED ON LIVER AND STRIATED MUSCLE COMPUTED TOMOGRAPHY ATTENUATIONS IN RATS

Year 2023, Volume: 24 Issue: 3, 327 - 333, 13.07.2023
https://doi.org/10.18229/kocatepetip.1130250

Abstract

OBJECTIVE: The interest on post-mortem computed tomographic studies targeting post-mortem interval (PMI) estimations is increasing. Most studies have been conducted in an uncontrolled or relatively less controlled condition. However, this study investigates the usefulness of computed tomography attenuations of the liver and striated muscles in PMI estimation under strictly controlled environmental conditions.
MATERIAL AND METHODS: Post-mortem computed tomography images of 30 Wistar Albino rats were obtained in the first 30 min after death and 12, 24, 36, 48, 72, 96, 120, 144 and 168-hours following death. Repeated attenuations of both thelateral lobes of the liver and paraspinal muscle were recorded in 0.12-cm2 regions of interest.
RESULTS: The attenuation values of the liver and paraspinal muscles were higher 12-hour post-mortem. A significant difference was observed between the images obtained 30 minutes post-mortem and those obtained 12 hours post-mortem in both male (p=0.01) and female rats (p=0.01). Different cut-off attenuation values for the liver and muscle tissue were determined to estimate the post-mortem interval.
CONCLUSIONS: The use of attenuation values of the liver and striated muscles with the proposed model was found to be beneficial for the determination of PMI. The cut-off values of attenuation, especially for the liver, can be used in the delimitation of the post-mortem interval.

Project Number

THD-2017-11908

References

  • 1. Yıldırım MŞ, Sevinç S, Akçan R, et al. Use of Microbiological Methods in Postmortem Interval Estimation. Bullet Leg Med. 2015;20(1):56–9.
  • 2. Tumer AR, Karacaoglu E, Namli A, et al. Effects of different types of soil on decomposition: An experimental study. Leg Med. 2013;15(3):149–56.
  • 3. Thali MJ, Yen K, Schweitzer W, et al. Virtopsy, a New Imaging Horizon in Forensic Pathology: Virtual Autopsy by Postmortem Multislice Computed Tomography (MSCT) and Magnetic Resonance Imaging (MRI)-a Feasibility Study. J Forensic Sci. 2003;48(2):2002166.
  • 4. Ishida M, Gonoi W, Hagiwara K, et al. Postmortem changes of the thyroid on computed tomography., Leg Med. 2011;13(6):318-22.
  • 5. Kobayashi T, Shiotani S, Kaga K, et al. Characteristic signal intensity changes on postmortem magnetic resonance imaging of the brain. Jpn J Radiol. 2010;28(1):8–14.
  • 6. Barber JL, Hutchinson JC, Sebire NJ, Arthurs OJ. Pleural fluid accumulation detectable on paediatric post-mortem imaging: a possible marker of interval since death? Int J Legal Med . 2016;130(4):1003–10.
  • 7. Zerbini T, Da Silva LFF, Lobato Baptista PA, et al. Estimation of post mortem interval by tomographic images of intra-cardiac hypostasis. J Forensic Leg Med. 2016;38:111–5.
  • 8. Okuma H, Gonoi W, Ishida M, et al. Comparison of the cardiothoracic ratio between postmortem and antemortem computed tomography. Leg Med. 2017;24:86–91.
  • 9. Okuma H, Gonoi W, Ishida M, et al. Heart Wall Is Thicker on Postmortem Computed Tomography Than on Ante Mortem Computed Tomography: The First Longitudinal Study. PLoS One. 2013;8(9): e76026.
  • 10. Shiotani S, Kohno M, Ohashi N, et al. Dilatation of the heart on postmortem computed tomography (PMCT): Comparison with live CT. Radiat Med - Med Imaging Radiat Oncol. 2003;21(1):29–35.
  • 11. Okuma H, Gonoi W, Ishida M, et al. Comparison of attenuation of striated muscle between postmortem and antemortem computed tomography: Results of a longitudinal study. PLoS One. 2014;9(11):e111457.
  • 12. Takahashi N, Higuchi T, Shiotani M, et al. Intrahepatic gas at postmortem multislice computed tomography in cases of nontraumatic death. Jpn J Radiol. 2009;27(7):264–8.
  • 13. Okuma H, Gonoi W, Ishida M, et al. Comparison of volume and attenuation of the spleen between postmortem and antemortem computed tomography. Int J Legal Med. 2016;130(4):1081–7.
  • 14. Le Garff E, Mesli V, Marchand E, et al. Is bone analysis with μCT useful for short postmortem interval estimation? Int J Legal Med. 2018;132(1):269–77.
  • 15. Shirota G, Gonoi W, Ishida M, et al. Brain swelling and loss of gray and white matter differentiation in human postmortem cases by computed tomography. PLoS One. 2015;10(11):e0143848.
  • 16. Bayat AR, Koopmanschap D, Klein WM. Postmortem interval estimation: Value of postmortem cerebral CT. J Forensic Radiol Imaging. 2014;2(2):98.
  • 17. Shiotani S, Kohno M, Ohashi N, et al. Non-traumatic postmortem computed tomographic (PMCT) findings of the lung. Forensic Sci Int. 2004;139(1):39–48.
  • 18. Cocariu EA, Mageriu V, Stăniceanu F, et al. Correlations Between the Autolytic Changes and Postmortem Interval in Refrigerated Cadavers. Rom J Intern Med. 2016;54(2):105–12.
  • 19. Pittner S, Ehrenfellner B, Monticelli FC, et al. Postmortem muscle protein degradation in humans as a tool for PMI delimitation. Int J Legal Med. 2016;130(6):1547–55.
  • 20. Ishikawa N, Nishida A, Miyamori D, et al. Estimation of postmortem time based on aorta narrowing in CT imaging. J Forensic Leg Med. 2013;20(8):1075–7.
  • 21. Ishida M, Gonoi W, Hagiwara K, et al. Early postmortem volume reduction of adrenal gland: initial longitudinal computed tomographic study. Radiol Medica. 2015;120(7):662–9.
  • 22. Koopmanschap DHJLM, Bayat AR, Kubat B, et al. The radiodensity of cerebrospinal fluid and vitreous humor as indicator of the time since death. Forensic Sci Med Pathol. 2016;12(3):248–56.
  • 23. Wang J, Zheng J, Zhang J, et al. Estimation of Postmortem Interval Using the Radiological Techniques, Computed Tomography: A Pilot Study. J Forensic Sci Med. 2017;3(1):1–8.
  • 24. Iwamoto C, Ohuchida K, Okumura M, et al. Postmortem interval estimation using the animal model of postmortem gas volume changes. Leg Med. 2018 May 1;32:66–70.
  • 25. Fischer F, Grimm J, Kirchhoff C, et al. Postmortem 24-h interval computed tomography findings on intrahepatic gas development and changes of liver parenchyma radiopacity. Forensic Sci Int. 2012;214(1– 3):118–23.
  • 26. Colom B, Alcolea MP, Valle A, et al. Skeletal muscle of female rats exhibit higher mitochondrial mass and oxidative-phosphorylative capacities compared to males. Cell Physiol Biochem. 2007;19(1–4):205–12.
  • 27. Bazhan N, Jakovleva T, Feofanova N, et al. Sex Differences in Liver, Adipose Tissue, and Muscle Transcriptional Response to Fasting and Refeeding in Mice. Cells. 2019;8(12):1529.
  • 28. Miller I, Diepenbroek C, Rijntjes E, et al. Gender specific differences in the liver proteome of rats exposed to short term and low-concentration hexabromocyclododecane (HBCD). Toxicol Res (Camb). 2016;5(5):1273–83.
There are 28 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Articles
Authors

Mahmut Şerif Yıldırım 0000-0001-8861-9016

Ali Rıza Tümer 0000-0002-0547-4868

Ramazan Akçan 0000-0002-4100-9488

Burak Omay 0000-0002-7872-803X

Deniz Akata 0000-0002-1318-0085

İlyas Onbaşılar 0000-0002-1464-4654

Project Number THD-2017-11908
Publication Date July 13, 2023
Acceptance Date October 30, 2022
Published in Issue Year 2023 Volume: 24 Issue: 3

Cite

APA Yıldırım, M. Ş., Tümer, A. R., Akçan, R., Omay, B., et al. (2023). POST-MORTEM INTERVAL ESTIMATION BASED ON LIVER AND STRIATED MUSCLE COMPUTED TOMOGRAPHY ATTENUATIONS IN RATS. Kocatepe Tıp Dergisi, 24(3), 327-333. https://doi.org/10.18229/kocatepetip.1130250
AMA Yıldırım MŞ, Tümer AR, Akçan R, Omay B, Akata D, Onbaşılar İ. POST-MORTEM INTERVAL ESTIMATION BASED ON LIVER AND STRIATED MUSCLE COMPUTED TOMOGRAPHY ATTENUATIONS IN RATS. KTD. July 2023;24(3):327-333. doi:10.18229/kocatepetip.1130250
Chicago Yıldırım, Mahmut Şerif, Ali Rıza Tümer, Ramazan Akçan, Burak Omay, Deniz Akata, and İlyas Onbaşılar. “POST-MORTEM INTERVAL ESTIMATION BASED ON LIVER AND STRIATED MUSCLE COMPUTED TOMOGRAPHY ATTENUATIONS IN RATS”. Kocatepe Tıp Dergisi 24, no. 3 (July 2023): 327-33. https://doi.org/10.18229/kocatepetip.1130250.
EndNote Yıldırım MŞ, Tümer AR, Akçan R, Omay B, Akata D, Onbaşılar İ (July 1, 2023) POST-MORTEM INTERVAL ESTIMATION BASED ON LIVER AND STRIATED MUSCLE COMPUTED TOMOGRAPHY ATTENUATIONS IN RATS. Kocatepe Tıp Dergisi 24 3 327–333.
IEEE M. Ş. Yıldırım, A. R. Tümer, R. Akçan, B. Omay, D. Akata, and İ. Onbaşılar, “POST-MORTEM INTERVAL ESTIMATION BASED ON LIVER AND STRIATED MUSCLE COMPUTED TOMOGRAPHY ATTENUATIONS IN RATS”, KTD, vol. 24, no. 3, pp. 327–333, 2023, doi: 10.18229/kocatepetip.1130250.
ISNAD Yıldırım, Mahmut Şerif et al. “POST-MORTEM INTERVAL ESTIMATION BASED ON LIVER AND STRIATED MUSCLE COMPUTED TOMOGRAPHY ATTENUATIONS IN RATS”. Kocatepe Tıp Dergisi 24/3 (July 2023), 327-333. https://doi.org/10.18229/kocatepetip.1130250.
JAMA Yıldırım MŞ, Tümer AR, Akçan R, Omay B, Akata D, Onbaşılar İ. POST-MORTEM INTERVAL ESTIMATION BASED ON LIVER AND STRIATED MUSCLE COMPUTED TOMOGRAPHY ATTENUATIONS IN RATS. KTD. 2023;24:327–333.
MLA Yıldırım, Mahmut Şerif et al. “POST-MORTEM INTERVAL ESTIMATION BASED ON LIVER AND STRIATED MUSCLE COMPUTED TOMOGRAPHY ATTENUATIONS IN RATS”. Kocatepe Tıp Dergisi, vol. 24, no. 3, 2023, pp. 327-33, doi:10.18229/kocatepetip.1130250.
Vancouver Yıldırım MŞ, Tümer AR, Akçan R, Omay B, Akata D, Onbaşılar İ. POST-MORTEM INTERVAL ESTIMATION BASED ON LIVER AND STRIATED MUSCLE COMPUTED TOMOGRAPHY ATTENUATIONS IN RATS. KTD. 2023;24(3):327-33.

88x31.png
Bu Dergi Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.