Research Article
BibTex RIS Cite
Year 2020, , 27 - 32, 31.05.2020
https://doi.org/10.34088/kojose.663888

Abstract

Project Number

116f115

References

  • [1] Balandin A. A., 2009. Chill Out: New Materials and Designs Keep the Chips Cool. IEEE Spectrum, 46(10), pp. 28–33.
  • [2] Ghosh S., Calizo I., Teweldebrhan D., Pokatilov E. P., Nika D. L., Balandin A. A., Bao W., Miao F., Lau C. N., Ghosh S., Calizo I., Teweldebrhan D., Pokatilov E. P., Nika D. L., Balandin A. A., 2008. Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits. Applied Physics Letters, 92(15), p. 151911.
  • [3] Balandin A. A., Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F., Lau C. N., 2008. Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 8(3), pp. 902–907.
  • [4] Chen S., Moore A. L., Cai W., Suk J. W., An J., Mishra C., Amos C., Magnuson C. W., Kang J., Shi L., Ruoff R. S., 2011. Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments. ACS Nano, 5(1), pp. 321–328.
  • [5] Lee C., Wei X., Kysar J. W., Hone J., 2008. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science (New York, N.Y.) 321(5887), pp. 385–388.
  • [6] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., 2000. Electric Field Effect in Atomically Thin Carbon Films, doi: 10.1126/science.1102896.
  • [7] Jeon C. H., Jeong Y. H., Seo J. J., Tien H. N., Hong S. T., Yum Y. J., Hur S. H., Lee K. J., 2014. Material Properties of Graphene/Aluminum Metal Matrix Composites Fabricated by Friction Stir Processing. International Journal of Precision Engineering and Manufacturing, 15(6), pp. 1235-1239.
  • [8] Yan S. J., Yang C., Hong Q. H., Chen J. Z., Liu D. B., Dai S. L., 2014. Research of Graphene-Reinforced Aluminum Matrix Nanocomposites. Cailiao Gongcheng/Journal of Materials Engineering, 0(4), pp. 1–6.
  • [9] Liu J., Khan U., Coleman J., Fernandez B., Rodriguez P., Naher S., Brabazon D., 2016. Graphene Oxide and Graphene Nanosheet Reinforced Aluminium Matrix Composites: Powder Synthesis and Prepared Composite Characteristics. Materials & Design, 94, pp. 87–94.
  • [10] Shin S. E., Choi H. J., Shin J. H., Bae D. H., 2015. Strengthening Behavior of Few-Layered Graphene/Aluminum Composites. Carbon, 82, pp. 143-151.
  • [11] Huang Y., Ouyang Q., Guo Q., Guo X., Zhang G., Zhang D., 2016. Graphite Film/Aluminum Laminate Composites with Ultrahigh Thermal Conductivity for Thermal Management Applications. Materials & Design, 90, pp. 508-515.
  • [12] Zheng Z., Liu Y., Bai Y., Zhang J., Han Z., Ren L., 2016. Fabrication of Biomimetic Hydrophobic Patterned Graphene Surface with Ecofriendly Anti-Corrosion Properties for Al Alloy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 500, pp. 64-71.
  • [13] Zhang L., Hou G., Zhai W., Ai Q., Feng J., Zhang L., Si P., Ci L., 2018. Aluminum/Graphene Composites with Enhanced Heat-Dissipation Properties by in-Situ Reduction of Graphene Oxide on Aluminum Particles. Journal of Alloys and Compounds, 748, pp. 854-860.
  • [14] Liu J., Hua L., Li S., Yu M., 2015. Graphene Dip Coatings: An Effective Anticorrosion Barrier on Aluminum. Applied Surface Science, 327, pp. 241-245.
  • [15] Han X., Huang Y., Gao Q., Yu M., Chen X., 2018. High Thermal Conductivity and Mechanical Properties of Nanotube@Cu/Ag@Graphite/ Aluminum Composites. Industrial & Engineering Chemistry Research, 57(31), pp. 10365-10371.
  • [16] Abhinav C., Reddy K. V. K., Raju G. G., Subramanyam K., 2017. Experimental Investigation of Graphene Coated Al Cuboid Crammed with PCM ` s for Efficient Thermal Energy Storage and Conversion. International Research Journal of Engineering and Technology, 4(12), pp. 396-402.
  • [17] Su R., Zhang X., 2018. Size Effect of Thermal Conductivity in Monolayer Graphene. Applied Thermal Engineering, 144, pp. 488-494.
  • [18] Cao A., 2012. Molecular Dynamics Simulation Study on Heat Transport in Monolayer Graphene Sheet with Various Geometries. Journal of Applied Physics, 111(8), p. 083528.
  • [19] Erturk A. S., Kirca M., Kirkayak L., 2018. Mechanical Enhancement of an Aluminum Layer by Graphene Coating. Journal of Materials Research 33(18), pp. 2741-2751.
  • [20] Nosé S., 1984. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. The Journal of Chemical Physics, 81(1), pp. 511-519.
  • [21] Kumar S., 2017. Graphene Engendered 2-D Structural Morphology of Aluminium Atoms: Molecular Dynamics Simulation Study. Materials Chemistry and Physics, 202, pp. 329-339.
  • [22] Wei Z., Ni Z., Bi K., Chen M., Chen Y., 2011. In-Plane Lattice Thermal Conductivities of Multilayer Graphene Films. Carbon, 49(8), pp. 2653-2658.
  • [23] Rajasekaran G., Kumar R., Parashar A., 2016. Tersoff Potential with Improved Accuracy for Simulating Graphene in Molecular Dynamics Environment. Materials Research Express, 3(3), p. 035011.
  • [24] Deyirmenjian V. B., Heine V., Payne M. C., Milman V., Lynden-Bell R. M., Finnis M. W., 1995. Ab Initio Atomistic Simulation of the Strength of Defective Aluminum and Tests of Empirical Force Models. Physical Review B, 52(21), pp. 15191-15207.
  • [25] Shibuta Y., Elliott J. A., 2011. Interaction between Two Graphene Sheets with a Turbostratic Orientational Relationship. Chemical Physics Letters, 512, pp. 146-150.
  • [26] Verlet L., 1967. Computer “Exyeriments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review, 159(2), pp. 183-195.
  • [27] Anderson C. V. D. R., Tamma K. K., 2004. An Overview of Advances in Heat Conduction Models and Approaches for Prediction of Thermal Conductivity in Thin Dielectric Films. International Journal of Numerical Methods for Heat and Fluid Flow, 14(1), pp. 12-65.
  • [28] Jain A., McGaughey A. J. H., 2016. Thermal Transport by Phonons and Electrons in Aluminum, Silver, and Gold from First Principles. Physical Review B, 93(8), p. 081206.
  • [29] Chantrenne, Raynaud, Barrat, 2003. Study of Phonon Heat Transfer in Metallic Solids from Molecular Dynamics Simulations. Microscale Thermophysical Engineering, 7(2), pp. 117-136.

Non-equilibrium Molecular Dynamics for Calculating the Thermal Conductivity of Graphene-Coated Aluminum

Year 2020, , 27 - 32, 31.05.2020
https://doi.org/10.34088/kojose.663888

Abstract

The number of graphene layer and length effect on the thermal conductivity of the graphene-coated aluminum is studied using non-equilibrium molecular dynamics (NEMD) simulation method. The NEMD simulation code is created and performed in the C++ computer programming language with Message Passing Interface (MPI) library. NEMD simulations are carried out for bare aluminum, graphene, single-layer graphene (SLG) - bilayer graphene (BLG) coated aluminum. Results show that the thermal conductivity increases with the length of the model. Moreover, coating one side of aluminum with graphene increases the phonon thermal conductivity 149% and 261% for SLG and BLG respectively.

Supporting Institution

TÜBİTAK

Project Number

116f115

Thanks

The numerical calculations reported in this paper were partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA Resources). This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK), Project No: 116F115.

References

  • [1] Balandin A. A., 2009. Chill Out: New Materials and Designs Keep the Chips Cool. IEEE Spectrum, 46(10), pp. 28–33.
  • [2] Ghosh S., Calizo I., Teweldebrhan D., Pokatilov E. P., Nika D. L., Balandin A. A., Bao W., Miao F., Lau C. N., Ghosh S., Calizo I., Teweldebrhan D., Pokatilov E. P., Nika D. L., Balandin A. A., 2008. Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits. Applied Physics Letters, 92(15), p. 151911.
  • [3] Balandin A. A., Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F., Lau C. N., 2008. Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 8(3), pp. 902–907.
  • [4] Chen S., Moore A. L., Cai W., Suk J. W., An J., Mishra C., Amos C., Magnuson C. W., Kang J., Shi L., Ruoff R. S., 2011. Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments. ACS Nano, 5(1), pp. 321–328.
  • [5] Lee C., Wei X., Kysar J. W., Hone J., 2008. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science (New York, N.Y.) 321(5887), pp. 385–388.
  • [6] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., 2000. Electric Field Effect in Atomically Thin Carbon Films, doi: 10.1126/science.1102896.
  • [7] Jeon C. H., Jeong Y. H., Seo J. J., Tien H. N., Hong S. T., Yum Y. J., Hur S. H., Lee K. J., 2014. Material Properties of Graphene/Aluminum Metal Matrix Composites Fabricated by Friction Stir Processing. International Journal of Precision Engineering and Manufacturing, 15(6), pp. 1235-1239.
  • [8] Yan S. J., Yang C., Hong Q. H., Chen J. Z., Liu D. B., Dai S. L., 2014. Research of Graphene-Reinforced Aluminum Matrix Nanocomposites. Cailiao Gongcheng/Journal of Materials Engineering, 0(4), pp. 1–6.
  • [9] Liu J., Khan U., Coleman J., Fernandez B., Rodriguez P., Naher S., Brabazon D., 2016. Graphene Oxide and Graphene Nanosheet Reinforced Aluminium Matrix Composites: Powder Synthesis and Prepared Composite Characteristics. Materials & Design, 94, pp. 87–94.
  • [10] Shin S. E., Choi H. J., Shin J. H., Bae D. H., 2015. Strengthening Behavior of Few-Layered Graphene/Aluminum Composites. Carbon, 82, pp. 143-151.
  • [11] Huang Y., Ouyang Q., Guo Q., Guo X., Zhang G., Zhang D., 2016. Graphite Film/Aluminum Laminate Composites with Ultrahigh Thermal Conductivity for Thermal Management Applications. Materials & Design, 90, pp. 508-515.
  • [12] Zheng Z., Liu Y., Bai Y., Zhang J., Han Z., Ren L., 2016. Fabrication of Biomimetic Hydrophobic Patterned Graphene Surface with Ecofriendly Anti-Corrosion Properties for Al Alloy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 500, pp. 64-71.
  • [13] Zhang L., Hou G., Zhai W., Ai Q., Feng J., Zhang L., Si P., Ci L., 2018. Aluminum/Graphene Composites with Enhanced Heat-Dissipation Properties by in-Situ Reduction of Graphene Oxide on Aluminum Particles. Journal of Alloys and Compounds, 748, pp. 854-860.
  • [14] Liu J., Hua L., Li S., Yu M., 2015. Graphene Dip Coatings: An Effective Anticorrosion Barrier on Aluminum. Applied Surface Science, 327, pp. 241-245.
  • [15] Han X., Huang Y., Gao Q., Yu M., Chen X., 2018. High Thermal Conductivity and Mechanical Properties of Nanotube@Cu/Ag@Graphite/ Aluminum Composites. Industrial & Engineering Chemistry Research, 57(31), pp. 10365-10371.
  • [16] Abhinav C., Reddy K. V. K., Raju G. G., Subramanyam K., 2017. Experimental Investigation of Graphene Coated Al Cuboid Crammed with PCM ` s for Efficient Thermal Energy Storage and Conversion. International Research Journal of Engineering and Technology, 4(12), pp. 396-402.
  • [17] Su R., Zhang X., 2018. Size Effect of Thermal Conductivity in Monolayer Graphene. Applied Thermal Engineering, 144, pp. 488-494.
  • [18] Cao A., 2012. Molecular Dynamics Simulation Study on Heat Transport in Monolayer Graphene Sheet with Various Geometries. Journal of Applied Physics, 111(8), p. 083528.
  • [19] Erturk A. S., Kirca M., Kirkayak L., 2018. Mechanical Enhancement of an Aluminum Layer by Graphene Coating. Journal of Materials Research 33(18), pp. 2741-2751.
  • [20] Nosé S., 1984. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. The Journal of Chemical Physics, 81(1), pp. 511-519.
  • [21] Kumar S., 2017. Graphene Engendered 2-D Structural Morphology of Aluminium Atoms: Molecular Dynamics Simulation Study. Materials Chemistry and Physics, 202, pp. 329-339.
  • [22] Wei Z., Ni Z., Bi K., Chen M., Chen Y., 2011. In-Plane Lattice Thermal Conductivities of Multilayer Graphene Films. Carbon, 49(8), pp. 2653-2658.
  • [23] Rajasekaran G., Kumar R., Parashar A., 2016. Tersoff Potential with Improved Accuracy for Simulating Graphene in Molecular Dynamics Environment. Materials Research Express, 3(3), p. 035011.
  • [24] Deyirmenjian V. B., Heine V., Payne M. C., Milman V., Lynden-Bell R. M., Finnis M. W., 1995. Ab Initio Atomistic Simulation of the Strength of Defective Aluminum and Tests of Empirical Force Models. Physical Review B, 52(21), pp. 15191-15207.
  • [25] Shibuta Y., Elliott J. A., 2011. Interaction between Two Graphene Sheets with a Turbostratic Orientational Relationship. Chemical Physics Letters, 512, pp. 146-150.
  • [26] Verlet L., 1967. Computer “Exyeriments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review, 159(2), pp. 183-195.
  • [27] Anderson C. V. D. R., Tamma K. K., 2004. An Overview of Advances in Heat Conduction Models and Approaches for Prediction of Thermal Conductivity in Thin Dielectric Films. International Journal of Numerical Methods for Heat and Fluid Flow, 14(1), pp. 12-65.
  • [28] Jain A., McGaughey A. J. H., 2016. Thermal Transport by Phonons and Electrons in Aluminum, Silver, and Gold from First Principles. Physical Review B, 93(8), p. 081206.
  • [29] Chantrenne, Raynaud, Barrat, 2003. Study of Phonon Heat Transfer in Metallic Solids from Molecular Dynamics Simulations. Microscale Thermophysical Engineering, 7(2), pp. 117-136.
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering, Plating Technology
Journal Section Articles
Authors

Kasim Toprak 0000-0002-0043-2941

Ahmet Yılmaz 0000-0003-4601-9068

Project Number 116f115
Publication Date May 31, 2020
Acceptance Date August 11, 2020
Published in Issue Year 2020

Cite

APA Toprak, K., & Yılmaz, A. (2020). Non-equilibrium Molecular Dynamics for Calculating the Thermal Conductivity of Graphene-Coated Aluminum. Kocaeli Journal of Science and Engineering, 3(1), 27-32. https://doi.org/10.34088/kojose.663888