Research Article
BibTex RIS Cite
Year 2019, Volume: 7 Issue: 2, 324 - 332, 15.10.2019

Abstract

References

  • [1] A. Barman and G. Ghosh, Concircular curvature tensor of a semi-symmetric non-metric connection on P-Sasakian manifolds, An. Univ. Vest. Timis. Ser. Mat. Inform. LIV(2016), 47–58.
  • [2] D. E. Blair, Inversion theory and conformal mapping, Stud. Math. Libr. 9, Amer. Math. Soc. (2000).
  • [3] U. C. De and Krishnendu De, On Lorentzian Trans-Sasakian manifolds, Cummun. Fac. Sci. Univ. Ank. Series 62 (2013) no. 2, 37􀀀51:
  • [4] A. Friedmann and J. A. Schouten, ¨U ber die Geometric der halbsymmetrischen ¨U bertragung, Math. Z.21(1924), 211–223.
  • [5] S. Golab, On semi􀀀symmetric and quarter􀀀symmetric linear connections, Tensor (N.S.) 29 (1975) ; 249􀀀254.
  • [6] K. Matsumoto, On Lorentzian para-contact manifold, Bull Yomagata Univ. Natur. Sci. 12 no. 2 (1989) 151-156.
  • [7] W. Kuhnel, Conformal Transformations between Einstein Spaces, Bonn, 1985/1986, 105–146, Aspects Math. E12, Vieweg, Braunschweig, 1988.
  • [8] A.K. Mondal, U.C. De, Some properties of a quarter-symmetric metric connection on a Sasakian manifold. Bull. Math. Analysis Appl. 3 (2009), 99-108.
  • [9] K. Mandal and U.C. De, Quarter-symmetric metric connection in a P-Sasakian manifold. An. Univ. Vest. Timis. Ser. Math-Inform. LIII(2015), 137-150.
  • [10] O’Neill, B., Semi-Riemannian geometry with applications to relativity, Academic press (1983).
  • [11] C. Ozgur, f-conformally flat Lorentzian para-Sasakian manifolds. Radovi Matematicki 12 (2003), 99-106.
  • [12] R. Prasad and A. Haseeb, On a Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connection, Novi Sad J. Math. Vol. 46, No. 2, 2016, 103-116.
  • [13] K. Yano, Concircular Geometry I. Concircular Transformations, Proc. Imp. Acad. Tokyo 16 (1940), 195–200.
  • [14] K. Yano and S. Bochner, Curvature and Betti numbers, Ann. of Math. Stud. 32(1953).
  • [15] A. Yildiz and C. Murathan, On Lorentzian a-Sasakian manifolds. Kyungpook Math. J. 45 (2005),95-103:
  • [16] A. Yildiz, M. Turan and B. E. Acet, On three dimensional Lorentzian a-Sasakian manifolds. Bull. Math. Anal. Appl. 1(2009), 90-98.
  • [17] A. Yildiz, M. Turan and C. Murathan, A class of Lorentzian a-Sasakian manifolds. Kyungpook Math. J. 49 (2009),789-799.

A Study on Lorentzian $\alpha -$Sasakian Manifolds

Year 2019, Volume: 7 Issue: 2, 324 - 332, 15.10.2019

Abstract

The object of the present paper is to study the geometric properties of Concircular curvature tensor on Lorentzian $\alpha -$Sasakian manifold admitting a type of quarter-symmetric metric connection. In the last, we provide an example of 3-dimensional Lorentzian $\alpha -$Sasakian manifold endowed with the quarter-symmetric metric connection which is under consideration is an $\eta -$Einstein manifold with respect to the quarter-symmetric metric connection.

References

  • [1] A. Barman and G. Ghosh, Concircular curvature tensor of a semi-symmetric non-metric connection on P-Sasakian manifolds, An. Univ. Vest. Timis. Ser. Mat. Inform. LIV(2016), 47–58.
  • [2] D. E. Blair, Inversion theory and conformal mapping, Stud. Math. Libr. 9, Amer. Math. Soc. (2000).
  • [3] U. C. De and Krishnendu De, On Lorentzian Trans-Sasakian manifolds, Cummun. Fac. Sci. Univ. Ank. Series 62 (2013) no. 2, 37􀀀51:
  • [4] A. Friedmann and J. A. Schouten, ¨U ber die Geometric der halbsymmetrischen ¨U bertragung, Math. Z.21(1924), 211–223.
  • [5] S. Golab, On semi􀀀symmetric and quarter􀀀symmetric linear connections, Tensor (N.S.) 29 (1975) ; 249􀀀254.
  • [6] K. Matsumoto, On Lorentzian para-contact manifold, Bull Yomagata Univ. Natur. Sci. 12 no. 2 (1989) 151-156.
  • [7] W. Kuhnel, Conformal Transformations between Einstein Spaces, Bonn, 1985/1986, 105–146, Aspects Math. E12, Vieweg, Braunschweig, 1988.
  • [8] A.K. Mondal, U.C. De, Some properties of a quarter-symmetric metric connection on a Sasakian manifold. Bull. Math. Analysis Appl. 3 (2009), 99-108.
  • [9] K. Mandal and U.C. De, Quarter-symmetric metric connection in a P-Sasakian manifold. An. Univ. Vest. Timis. Ser. Math-Inform. LIII(2015), 137-150.
  • [10] O’Neill, B., Semi-Riemannian geometry with applications to relativity, Academic press (1983).
  • [11] C. Ozgur, f-conformally flat Lorentzian para-Sasakian manifolds. Radovi Matematicki 12 (2003), 99-106.
  • [12] R. Prasad and A. Haseeb, On a Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connection, Novi Sad J. Math. Vol. 46, No. 2, 2016, 103-116.
  • [13] K. Yano, Concircular Geometry I. Concircular Transformations, Proc. Imp. Acad. Tokyo 16 (1940), 195–200.
  • [14] K. Yano and S. Bochner, Curvature and Betti numbers, Ann. of Math. Stud. 32(1953).
  • [15] A. Yildiz and C. Murathan, On Lorentzian a-Sasakian manifolds. Kyungpook Math. J. 45 (2005),95-103:
  • [16] A. Yildiz, M. Turan and B. E. Acet, On three dimensional Lorentzian a-Sasakian manifolds. Bull. Math. Anal. Appl. 1(2009), 90-98.
  • [17] A. Yildiz, M. Turan and C. Murathan, A class of Lorentzian a-Sasakian manifolds. Kyungpook Math. J. 49 (2009),789-799.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Rajendra Prasad

Shashikant Pandey This is me

Sandeep Kumar Verma

Sumeet Kumar This is me

Publication Date October 15, 2019
Submission Date December 31, 2018
Acceptance Date June 18, 2019
Published in Issue Year 2019 Volume: 7 Issue: 2

Cite

APA Prasad, R., Pandey, S., Verma, S. K., Kumar, S. (2019). A Study on Lorentzian $\alpha -$Sasakian Manifolds. Konuralp Journal of Mathematics, 7(2), 324-332.
AMA Prasad R, Pandey S, Verma SK, Kumar S. A Study on Lorentzian $\alpha -$Sasakian Manifolds. Konuralp J. Math. October 2019;7(2):324-332.
Chicago Prasad, Rajendra, Shashikant Pandey, Sandeep Kumar Verma, and Sumeet Kumar. “A Study on Lorentzian $\alpha -$Sasakian Manifolds”. Konuralp Journal of Mathematics 7, no. 2 (October 2019): 324-32.
EndNote Prasad R, Pandey S, Verma SK, Kumar S (October 1, 2019) A Study on Lorentzian $\alpha -$Sasakian Manifolds. Konuralp Journal of Mathematics 7 2 324–332.
IEEE R. Prasad, S. Pandey, S. K. Verma, and S. Kumar, “A Study on Lorentzian $\alpha -$Sasakian Manifolds”, Konuralp J. Math., vol. 7, no. 2, pp. 324–332, 2019.
ISNAD Prasad, Rajendra et al. “A Study on Lorentzian $\alpha -$Sasakian Manifolds”. Konuralp Journal of Mathematics 7/2 (October 2019), 324-332.
JAMA Prasad R, Pandey S, Verma SK, Kumar S. A Study on Lorentzian $\alpha -$Sasakian Manifolds. Konuralp J. Math. 2019;7:324–332.
MLA Prasad, Rajendra et al. “A Study on Lorentzian $\alpha -$Sasakian Manifolds”. Konuralp Journal of Mathematics, vol. 7, no. 2, 2019, pp. 324-32.
Vancouver Prasad R, Pandey S, Verma SK, Kumar S. A Study on Lorentzian $\alpha -$Sasakian Manifolds. Konuralp J. Math. 2019;7(2):324-32.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.