[1] A. Barman and G. Ghosh, Concircular curvature tensor of a semi-symmetric non-metric connection on P-Sasakian manifolds, An. Univ. Vest. Timis.
Ser. Mat. Inform. LIV(2016), 47–58.
[2] D. E. Blair, Inversion theory and conformal mapping, Stud. Math. Libr. 9, Amer. Math. Soc. (2000).
[3] U. C. De and Krishnendu De, On Lorentzian Trans-Sasakian manifolds, Cummun. Fac. Sci. Univ. Ank. Series 62 (2013) no. 2, 3751:
[4] A. Friedmann and J. A. Schouten, ¨U ber die Geometric der halbsymmetrischen ¨U bertragung, Math. Z.21(1924), 211–223.
[5] S. Golab, On semisymmetric and quartersymmetric linear connections, Tensor (N.S.) 29 (1975) ; 249254.
[6] K. Matsumoto, On Lorentzian para-contact manifold, Bull Yomagata Univ. Natur. Sci. 12 no. 2 (1989) 151-156.
[7] W. Kuhnel, Conformal Transformations between Einstein Spaces, Bonn, 1985/1986, 105–146, Aspects Math. E12, Vieweg, Braunschweig, 1988.
[8] A.K. Mondal, U.C. De, Some properties of a quarter-symmetric metric connection on a Sasakian manifold. Bull. Math. Analysis Appl. 3 (2009), 99-108.
[9] K. Mandal and U.C. De, Quarter-symmetric metric connection in a P-Sasakian manifold. An. Univ. Vest. Timis. Ser. Math-Inform. LIII(2015), 137-150.
[10] O’Neill, B., Semi-Riemannian geometry with applications to relativity, Academic press (1983).
[12] R. Prasad and A. Haseeb, On a Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connection, Novi Sad J. Math. Vol. 46,
No. 2, 2016, 103-116.
[13] K. Yano, Concircular Geometry I. Concircular Transformations, Proc. Imp. Acad. Tokyo 16 (1940), 195–200.
[14] K. Yano and S. Bochner, Curvature and Betti numbers, Ann. of Math. Stud. 32(1953).
[15] A. Yildiz and C. Murathan, On Lorentzian a-Sasakian manifolds. Kyungpook Math. J. 45 (2005),95-103:
[16] A. Yildiz, M. Turan and B. E. Acet, On three dimensional Lorentzian a-Sasakian manifolds. Bull. Math. Anal. Appl. 1(2009), 90-98.
[17] A. Yildiz, M. Turan and C. Murathan, A class of Lorentzian a-Sasakian manifolds. Kyungpook Math. J. 49 (2009),789-799.
A Study on Lorentzian $\alpha -$Sasakian Manifolds
Year 2019,
Volume: 7 Issue: 2, 324 - 332, 15.10.2019
The object of the present paper is to study the geometric properties of Concircular curvature tensor on Lorentzian $\alpha -$Sasakian manifold admitting a type of quarter-symmetric metric connection. In the last, we provide an example of 3-dimensional Lorentzian $\alpha -$Sasakian manifold endowed with the quarter-symmetric metric connection which is under consideration is an $\eta -$Einstein manifold with respect to the quarter-symmetric metric connection.
[1] A. Barman and G. Ghosh, Concircular curvature tensor of a semi-symmetric non-metric connection on P-Sasakian manifolds, An. Univ. Vest. Timis.
Ser. Mat. Inform. LIV(2016), 47–58.
[2] D. E. Blair, Inversion theory and conformal mapping, Stud. Math. Libr. 9, Amer. Math. Soc. (2000).
[3] U. C. De and Krishnendu De, On Lorentzian Trans-Sasakian manifolds, Cummun. Fac. Sci. Univ. Ank. Series 62 (2013) no. 2, 3751:
[4] A. Friedmann and J. A. Schouten, ¨U ber die Geometric der halbsymmetrischen ¨U bertragung, Math. Z.21(1924), 211–223.
[5] S. Golab, On semisymmetric and quartersymmetric linear connections, Tensor (N.S.) 29 (1975) ; 249254.
[6] K. Matsumoto, On Lorentzian para-contact manifold, Bull Yomagata Univ. Natur. Sci. 12 no. 2 (1989) 151-156.
[7] W. Kuhnel, Conformal Transformations between Einstein Spaces, Bonn, 1985/1986, 105–146, Aspects Math. E12, Vieweg, Braunschweig, 1988.
[8] A.K. Mondal, U.C. De, Some properties of a quarter-symmetric metric connection on a Sasakian manifold. Bull. Math. Analysis Appl. 3 (2009), 99-108.
[9] K. Mandal and U.C. De, Quarter-symmetric metric connection in a P-Sasakian manifold. An. Univ. Vest. Timis. Ser. Math-Inform. LIII(2015), 137-150.
[10] O’Neill, B., Semi-Riemannian geometry with applications to relativity, Academic press (1983).
[12] R. Prasad and A. Haseeb, On a Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connection, Novi Sad J. Math. Vol. 46,
No. 2, 2016, 103-116.
[13] K. Yano, Concircular Geometry I. Concircular Transformations, Proc. Imp. Acad. Tokyo 16 (1940), 195–200.
[14] K. Yano and S. Bochner, Curvature and Betti numbers, Ann. of Math. Stud. 32(1953).
[15] A. Yildiz and C. Murathan, On Lorentzian a-Sasakian manifolds. Kyungpook Math. J. 45 (2005),95-103:
[16] A. Yildiz, M. Turan and B. E. Acet, On three dimensional Lorentzian a-Sasakian manifolds. Bull. Math. Anal. Appl. 1(2009), 90-98.
[17] A. Yildiz, M. Turan and C. Murathan, A class of Lorentzian a-Sasakian manifolds. Kyungpook Math. J. 49 (2009),789-799.
Prasad, R., Pandey, S., Verma, S. K., Kumar, S. (2019). A Study on Lorentzian $\alpha -$Sasakian Manifolds. Konuralp Journal of Mathematics, 7(2), 324-332.
AMA
Prasad R, Pandey S, Verma SK, Kumar S. A Study on Lorentzian $\alpha -$Sasakian Manifolds. Konuralp J. Math. October 2019;7(2):324-332.
Chicago
Prasad, Rajendra, Shashikant Pandey, Sandeep Kumar Verma, and Sumeet Kumar. “A Study on Lorentzian $\alpha -$Sasakian Manifolds”. Konuralp Journal of Mathematics 7, no. 2 (October 2019): 324-32.
EndNote
Prasad R, Pandey S, Verma SK, Kumar S (October 1, 2019) A Study on Lorentzian $\alpha -$Sasakian Manifolds. Konuralp Journal of Mathematics 7 2 324–332.
IEEE
R. Prasad, S. Pandey, S. K. Verma, and S. Kumar, “A Study on Lorentzian $\alpha -$Sasakian Manifolds”, Konuralp J. Math., vol. 7, no. 2, pp. 324–332, 2019.
ISNAD
Prasad, Rajendra et al. “A Study on Lorentzian $\alpha -$Sasakian Manifolds”. Konuralp Journal of Mathematics 7/2 (October 2019), 324-332.
JAMA
Prasad R, Pandey S, Verma SK, Kumar S. A Study on Lorentzian $\alpha -$Sasakian Manifolds. Konuralp J. Math. 2019;7:324–332.
MLA
Prasad, Rajendra et al. “A Study on Lorentzian $\alpha -$Sasakian Manifolds”. Konuralp Journal of Mathematics, vol. 7, no. 2, 2019, pp. 324-32.
Vancouver
Prasad R, Pandey S, Verma SK, Kumar S. A Study on Lorentzian $\alpha -$Sasakian Manifolds. Konuralp J. Math. 2019;7(2):324-32.