Year 2025,
Volume: 13 Issue: 2, 270 - 277, 31.10.2025
Fatih Nuray
,
Richard F. Patterson
References
-
[1] Agnew, R. P., Inclusion Relations Among Methods of Summability Compounded form Given Matrix Methods, Aru. Mat. 2, (1952), 361–374.
-
[2] Aizenberg, L. A. and Yuzhakov, A. P., Integral representations and residues in multidimensional complex analysis, Translation of Mathematical
Monographs, AMS, 58, (1983).
-
[3] Brown, H. I., Entire methods of summation, Compos. Math., 21 (1), (1969), 35–42.
-
[4] Hamilton, H. J., Transformations of Multiple Sequences, Duke Math. J., 2 (1936), 29 – 60.
-
[5] Hardy, H. G., Divergent Series, Oxford. (1949).
-
[6] Limaye, B. V. and Zeltser, M., On the Pringsheim convergence of double series, Proc. Est. Acad. Sci., 58 (2), (2009), 108—121.
-
[7] Nuray, F., Bounded index and four-dimensional summability methods. Novi Sad J. Math., 49 (2), (2019), 73–85.
-
[8] Bandura, A. and Nuray, F., Entire Bivariate Functions of Exponential Type II, Matematychni Studii, 59 (2), (2023), 156–167.
-
[9] Fricke, G. H., Roy, R. and Shah S. M., Bounded index, entire solutions of ordinary differential equations and summability methods, Int. J. of Math. and
Math. Sci. 4 (3), (1981), 417–434.
-
[10] Patterson, R. F., A theorem on entire four-dimensional summability methods, Appl. Math. and Comput., 219, (2013), 7777–7782,
-
[11] Patterson, R. F., Four-dimensional matrix characterization of absolute summability, Soochow J. Math., 30 (1), (2004), 21–26.
-
[12] Patterson, R. F., Analogues of some Fundamental Theorems of Summability Theory, Int. J. Math. Math. Sci., 23 (1), (2000), 1–9.
-
[13] Pringsheim, A., Zur theorie der zweifach unendlichen zahlenfolgen, Math. Ann., 53 (1900), 289–32.
-
[14] Robison, G. M., Divergent Double Sequences and Series, Amer. Math. Soc. Trans., 28 (1926), 50–73.
-
[15] Zeltser, M., On conservative matrix methods for double sequence spaces, Acta Math. Hungar., 95 (3), (2002), 225–242.
Entire Four-Dimensional Summation Methods
Year 2025,
Volume: 13 Issue: 2, 270 - 277, 31.10.2025
Fatih Nuray
,
Richard F. Patterson
Abstract
In this study, we establish the necessary and sufficient conditions for a four-dimensional matrix to map entire double-indexed sequences onto themselves, referring to such transformations as entire methods. Furthermore, we present a theorem addressing the consistency of these entire summation methods.
References
-
[1] Agnew, R. P., Inclusion Relations Among Methods of Summability Compounded form Given Matrix Methods, Aru. Mat. 2, (1952), 361–374.
-
[2] Aizenberg, L. A. and Yuzhakov, A. P., Integral representations and residues in multidimensional complex analysis, Translation of Mathematical
Monographs, AMS, 58, (1983).
-
[3] Brown, H. I., Entire methods of summation, Compos. Math., 21 (1), (1969), 35–42.
-
[4] Hamilton, H. J., Transformations of Multiple Sequences, Duke Math. J., 2 (1936), 29 – 60.
-
[5] Hardy, H. G., Divergent Series, Oxford. (1949).
-
[6] Limaye, B. V. and Zeltser, M., On the Pringsheim convergence of double series, Proc. Est. Acad. Sci., 58 (2), (2009), 108—121.
-
[7] Nuray, F., Bounded index and four-dimensional summability methods. Novi Sad J. Math., 49 (2), (2019), 73–85.
-
[8] Bandura, A. and Nuray, F., Entire Bivariate Functions of Exponential Type II, Matematychni Studii, 59 (2), (2023), 156–167.
-
[9] Fricke, G. H., Roy, R. and Shah S. M., Bounded index, entire solutions of ordinary differential equations and summability methods, Int. J. of Math. and
Math. Sci. 4 (3), (1981), 417–434.
-
[10] Patterson, R. F., A theorem on entire four-dimensional summability methods, Appl. Math. and Comput., 219, (2013), 7777–7782,
-
[11] Patterson, R. F., Four-dimensional matrix characterization of absolute summability, Soochow J. Math., 30 (1), (2004), 21–26.
-
[12] Patterson, R. F., Analogues of some Fundamental Theorems of Summability Theory, Int. J. Math. Math. Sci., 23 (1), (2000), 1–9.
-
[13] Pringsheim, A., Zur theorie der zweifach unendlichen zahlenfolgen, Math. Ann., 53 (1900), 289–32.
-
[14] Robison, G. M., Divergent Double Sequences and Series, Amer. Math. Soc. Trans., 28 (1926), 50–73.
-
[15] Zeltser, M., On conservative matrix methods for double sequence spaces, Acta Math. Hungar., 95 (3), (2002), 225–242.