Research Article
BibTex RIS Cite

Year 2025, Volume: 13 Issue: 2, 223 - 232, 31.10.2025

Abstract

References

  • [1] A. Adati and K. Matsumoto, On conformally recurrent and conformally symmetric P-Sasakian manifolds, TRU Math., Vol:13 (1997), 25-32.
  • [2] A. Adati and T. Miyazawa, On P-Sasakian manifolds satisfying certain conditions, Tensor, N.S., Vol:33 (1979), 173-178.
  • [3] G. Ayar, M. Yıldırım, Ricci solitons and gradient Ricci solitons on nearly Kenmotsu manifolds, Facta Universitatis, Series: Mathematics and Informatics, Vol:34 No.3 (2019), 503-510.
  • [4] G. Ayar, M. Yıldırım, h-Ricci solitons on nearly Kenmotsu manifolds, Asian-European Journal of Mathematics, ID-2040002, Vol:12 No.6 (2019)
  • [5] N. S. Agashe and M. R. Chafle, A semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math., Vol:23 (1992), 399-409.
  • [6] K. Amur and S. S. Pujar, On submanifolds of a Riemannian manifold admitting a metric semi-symmetric connection, Tensor, N.S., Vol:32 (1978), 35-38.
  • [7] N. Bhunia, S. Pahan and A. Bhattacharyya, Application of t-curvature tensor in spacetimes, Jordan J. Math. Stat., Vol:15 No.3B (2022), 629-641.
  • [8] T. Q. Binh, On semi-symmetric connections, Periodic Math. Hungarica, Vol:21 (1990), 101-107.
  • [9] J. P. Bourguignon, Une stratification de l’espace des structures riemanniennes, Compos. Math., Vol:30 (1975), 1-41.
  • [10] J. P. Bourguignon, Ricci curvature and Einstein metrics, Global Differential Geometry and Global Analysis (Berlin, 1979) (Lecture Notes in Mathematics, 838), Springer, Berlin, (1981), 42-63.
  • [11] G. Catino, L. Cremaschi, L, Cremaschi, Z. Djadli, C. Mantegazza and L. Mazzieri. The Ricci-Bourguignon flow, Pacific J. Math., Vol: 287(2) (2017), 337-370.
  • [12] G. Catino and L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal., Vol:132 (2016), 66-94.
  • [13] S. K. Chaubey and R. H. Ojha, On semi-symmetric non-metric connection on a Riemannian manifold, Filomat, Vol:26 (2012), 63-69.
  • [14] S. K. Chaybey and A. Yieldiz, Riemannian manifold admitting a new type of semi-symmetric non-metric connection, Turk. J. Math., Vol:43 (2019), 1887-1904.
  • [15] U. C. De, On a type of semi-symmetric metric connection on a Riemannian manifold, Indian J. Pure Appl. Math., Vol:21 (1990), 334-338.
  • [16] U. C. De and D. Kamilya, Hypersurfaces of a Riemannian manifold with semi-symmetric non-metric connection, J. Indian Inst. Sci., Vol:75 (1995), 707-710.
  • [17] U. C. De, Y. L. Han and P. B. Zhao, A special type of semi-symmetric non-metric connection on a Riemannian manifold, Facta Univ. (NIS), Vol:31 No.2 (2006), 529-541.
  • [18] H. A. Hayden, Subspaces of space with torsion, Proc. London Math. Soc., Vol:34 (1932), 27-50.
  • [19] R. S. Hamilton, The Ricci flow on surfaces, Math. and General Relativity, American Math. Soc. Contemp. Math., Vol:7 No.1 (1988), 232-262.
  • [20] K. Mandal and U. C. De, Quarter symmetric metric connection in a P-Sasakian manifold, Annals of West University of Timisoara-Mathematics and Comp. Sci., Vol:53 No.1 (2015), 137-150.
  • [21] K. Matsumoto, S. Ianus and I. Mihai, On P-Sasakian manifolds which admit certain tensor-fields, Publicationes Mathematicae-Debrecen, Vol:33 (1986), 199-204.
  • [22] H. G. Nagaraja and C. R. Premalatha, Ricci solitons in Kenmotsu manifolds, J. of Mathematical Analysis, Vol. 3(2) (2012), 18-24.
  • [23] C. Ozgur, On a class of para-Sasakian manifolds, Turkish Journal of Mathematics, Vol:29 No.3 (2005), 249-258.
  • [24] C. Ozgur and M. M. Tripathi, On P-Sasakian manifolds satisfying certain conditions on concircular curvature tensor, Turkish Journal of Mathematics, Vol:31 No.3 (2007), 171-179.
  • [25] C. Ozgur and S. Sular, Wraped product manifolds with semi-symmetric metric connections, Taiwan J. Math., Vol:15 (2011), 1701-1719.
  • [26] B. Prasad and S. C. Singh, Some properties of semi-symmetric non-metric connection in a Riemannian manifold, Jour. Pure Math., Vol:23 (2006), 121-134.
  • [27] B. Prasad and R. K. Verma, On a type of semi-symmetric non-metric connection on a Riemannian manifold, Bull. Call. Math. Soc., Vol:96 No.6 (2004), 483-488.
  • [28] B. Prasad, On pseudo projective curvature tensor on a Riemannian manifold, Bull. Cal. Math. Soc., Vol:94 No.3 (2002), 163-166.
  • [29] G. P. Pokhariyal and R. S. Mishra, Curvature tensors and their relativistic significance II, Yokohama Math. J., Vol:19 No.2 (1971), 97-103.
  • [30] V. V. Reddy, R. Sharma and S. Sivaramkrishan, Space times through Hawking-Ellis construction with a back ground Riemannian metric, Class Quant. Grav., Vol:24 No.13 (2007), 3339-3346.
  • [31] S. Sasaki and Y. Hatakeyama, On differentiable manifolds with certain structures which are closely related to almost contact structures II, Tohoku Mathematical Journal, Vol:13 (1961), 281-294.
  • [32] I. Sato and K. Matsumoto, On P-Sasakian manifolds satisfying certain conditions, Tensor N. S., Vol:33 (1979), 173-178.
  • [33] R. N. Singh and M. K. Pandey, On a type of semi-symmetric non-metric connection on a Riemannian manifold, Bull. Call. Math. Soc., Vol:96 No.6 (2008), 179-184.
  • [34] R. Sharma, Certain results on K-contact and (k;m)-contact manifolds, J. of Geometry, Vol:89 (2008), 138-147.
  • [35] S. S. Shukla, M. K. Shukla, On f-symmetric Para-Sasakian manifolds, Int. J. Math. Analysis, Vol:16 No.4 (2010), 761-769.
  • [36] M. Traore, H. M. Tastan and S. Gerdan Aydn, On almost h-Ricci-Bourguignon solitons, Miskolc. Math. Notes, ID-493508, Vol:25 No.1 (2024).
  • [37] M. Traore, H. M. Tastan, On sequential warped product h-Ricci-Bourguignon solitons, Filomat, ID-67856797, Vol:38 No.19, (2024).
  • [38] M. Traore,, H. M. Tastan and S. Gerdan Aydn, Some characterizations on Gradient Almost h-Ricci-Bourguignon Solitons, Boletim da Sociedade Paranaense de Matemtica, Vol:43 (2025), 1-12.
  • [39] M. M. Tripathi and P. Gupta, t-curvature tensor on a semi-Riemannian manifold, J. Adv. Math. Stud., Vol:4 No.1 (2011), 117-129.
  • [40] M. M. Tripathi, Ricci solitons in contact metric manifold, ArXiv: 0801. 4222 vl [math. D. G.], (2008).
  • [41] K. Yano, On semi-symmetric metric connections, Rev. Roumaine Math. Pure Appl., Vol. 15 (1970), 1579-1586.
  • [42] K. Yano, Concircular Geometry I. Concircular transformations, Math. Institute, Tokyo Imperial Univ. Proc. Vol:16 (1940), 195-200.
  • [43] K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies 32, Princeton University Press, 1953.
  • [44] M. Yıldırım, Semi-symmetric non-metric connections on statistical manifolds, Journal of Geometry and Physics, Vol:176 (2022),
  • [45] M. Yıldırım and G. Ayar, Ricci solitons and gradient Ricci solitons on nearly cosymplectic manifolds, Journal of Universal Mathematics, Vol:4 No.2 (2021), 201-208
  • [46] Y. Ishii, On conharmonic transformations, Tensor N. S., Vol. 7 (1957), 73-80.
  • [47] S. Zamkovoy, Canonical connection on paracontact manifolds, Ann. global Anal. Geom., Vol:36 (2009), 37-60.

$\eta $-Ricci Bourguignon Soliton on Para-Sasakian Manifolds with SSNM-Connection

Year 2025, Volume: 13 Issue: 2, 223 - 232, 31.10.2025

Abstract

The purpose of the present paper is to study $\eta $-Ricci-Bourguignon soliton on para-Sasakian manifold under some curvature conditions. We introduce here a new semi-symmetric non metric connection (briefly, SSNM-connection) on para-Sasakian manifold. We have obtained characterizations of para-Sasakian manifold based on both $\eta $% -Ricci-Bourguignon soliton and the $T_{\theta }$-curvature tensor with the SSNM-connection, where the $T_{\theta }$-curvature tensor is the generalization of conformal, concircular, conharmonic, projective, pseudo projective and $M$- projective curvature tensors. Moreover, we investigate $T_{\theta } $-Ricci symmetric para-Sasakian manifold admitting $\eta $% -Ricci-Bourguignon soliton with respect to SSNM-connection.

References

  • [1] A. Adati and K. Matsumoto, On conformally recurrent and conformally symmetric P-Sasakian manifolds, TRU Math., Vol:13 (1997), 25-32.
  • [2] A. Adati and T. Miyazawa, On P-Sasakian manifolds satisfying certain conditions, Tensor, N.S., Vol:33 (1979), 173-178.
  • [3] G. Ayar, M. Yıldırım, Ricci solitons and gradient Ricci solitons on nearly Kenmotsu manifolds, Facta Universitatis, Series: Mathematics and Informatics, Vol:34 No.3 (2019), 503-510.
  • [4] G. Ayar, M. Yıldırım, h-Ricci solitons on nearly Kenmotsu manifolds, Asian-European Journal of Mathematics, ID-2040002, Vol:12 No.6 (2019)
  • [5] N. S. Agashe and M. R. Chafle, A semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math., Vol:23 (1992), 399-409.
  • [6] K. Amur and S. S. Pujar, On submanifolds of a Riemannian manifold admitting a metric semi-symmetric connection, Tensor, N.S., Vol:32 (1978), 35-38.
  • [7] N. Bhunia, S. Pahan and A. Bhattacharyya, Application of t-curvature tensor in spacetimes, Jordan J. Math. Stat., Vol:15 No.3B (2022), 629-641.
  • [8] T. Q. Binh, On semi-symmetric connections, Periodic Math. Hungarica, Vol:21 (1990), 101-107.
  • [9] J. P. Bourguignon, Une stratification de l’espace des structures riemanniennes, Compos. Math., Vol:30 (1975), 1-41.
  • [10] J. P. Bourguignon, Ricci curvature and Einstein metrics, Global Differential Geometry and Global Analysis (Berlin, 1979) (Lecture Notes in Mathematics, 838), Springer, Berlin, (1981), 42-63.
  • [11] G. Catino, L. Cremaschi, L, Cremaschi, Z. Djadli, C. Mantegazza and L. Mazzieri. The Ricci-Bourguignon flow, Pacific J. Math., Vol: 287(2) (2017), 337-370.
  • [12] G. Catino and L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal., Vol:132 (2016), 66-94.
  • [13] S. K. Chaubey and R. H. Ojha, On semi-symmetric non-metric connection on a Riemannian manifold, Filomat, Vol:26 (2012), 63-69.
  • [14] S. K. Chaybey and A. Yieldiz, Riemannian manifold admitting a new type of semi-symmetric non-metric connection, Turk. J. Math., Vol:43 (2019), 1887-1904.
  • [15] U. C. De, On a type of semi-symmetric metric connection on a Riemannian manifold, Indian J. Pure Appl. Math., Vol:21 (1990), 334-338.
  • [16] U. C. De and D. Kamilya, Hypersurfaces of a Riemannian manifold with semi-symmetric non-metric connection, J. Indian Inst. Sci., Vol:75 (1995), 707-710.
  • [17] U. C. De, Y. L. Han and P. B. Zhao, A special type of semi-symmetric non-metric connection on a Riemannian manifold, Facta Univ. (NIS), Vol:31 No.2 (2006), 529-541.
  • [18] H. A. Hayden, Subspaces of space with torsion, Proc. London Math. Soc., Vol:34 (1932), 27-50.
  • [19] R. S. Hamilton, The Ricci flow on surfaces, Math. and General Relativity, American Math. Soc. Contemp. Math., Vol:7 No.1 (1988), 232-262.
  • [20] K. Mandal and U. C. De, Quarter symmetric metric connection in a P-Sasakian manifold, Annals of West University of Timisoara-Mathematics and Comp. Sci., Vol:53 No.1 (2015), 137-150.
  • [21] K. Matsumoto, S. Ianus and I. Mihai, On P-Sasakian manifolds which admit certain tensor-fields, Publicationes Mathematicae-Debrecen, Vol:33 (1986), 199-204.
  • [22] H. G. Nagaraja and C. R. Premalatha, Ricci solitons in Kenmotsu manifolds, J. of Mathematical Analysis, Vol. 3(2) (2012), 18-24.
  • [23] C. Ozgur, On a class of para-Sasakian manifolds, Turkish Journal of Mathematics, Vol:29 No.3 (2005), 249-258.
  • [24] C. Ozgur and M. M. Tripathi, On P-Sasakian manifolds satisfying certain conditions on concircular curvature tensor, Turkish Journal of Mathematics, Vol:31 No.3 (2007), 171-179.
  • [25] C. Ozgur and S. Sular, Wraped product manifolds with semi-symmetric metric connections, Taiwan J. Math., Vol:15 (2011), 1701-1719.
  • [26] B. Prasad and S. C. Singh, Some properties of semi-symmetric non-metric connection in a Riemannian manifold, Jour. Pure Math., Vol:23 (2006), 121-134.
  • [27] B. Prasad and R. K. Verma, On a type of semi-symmetric non-metric connection on a Riemannian manifold, Bull. Call. Math. Soc., Vol:96 No.6 (2004), 483-488.
  • [28] B. Prasad, On pseudo projective curvature tensor on a Riemannian manifold, Bull. Cal. Math. Soc., Vol:94 No.3 (2002), 163-166.
  • [29] G. P. Pokhariyal and R. S. Mishra, Curvature tensors and their relativistic significance II, Yokohama Math. J., Vol:19 No.2 (1971), 97-103.
  • [30] V. V. Reddy, R. Sharma and S. Sivaramkrishan, Space times through Hawking-Ellis construction with a back ground Riemannian metric, Class Quant. Grav., Vol:24 No.13 (2007), 3339-3346.
  • [31] S. Sasaki and Y. Hatakeyama, On differentiable manifolds with certain structures which are closely related to almost contact structures II, Tohoku Mathematical Journal, Vol:13 (1961), 281-294.
  • [32] I. Sato and K. Matsumoto, On P-Sasakian manifolds satisfying certain conditions, Tensor N. S., Vol:33 (1979), 173-178.
  • [33] R. N. Singh and M. K. Pandey, On a type of semi-symmetric non-metric connection on a Riemannian manifold, Bull. Call. Math. Soc., Vol:96 No.6 (2008), 179-184.
  • [34] R. Sharma, Certain results on K-contact and (k;m)-contact manifolds, J. of Geometry, Vol:89 (2008), 138-147.
  • [35] S. S. Shukla, M. K. Shukla, On f-symmetric Para-Sasakian manifolds, Int. J. Math. Analysis, Vol:16 No.4 (2010), 761-769.
  • [36] M. Traore, H. M. Tastan and S. Gerdan Aydn, On almost h-Ricci-Bourguignon solitons, Miskolc. Math. Notes, ID-493508, Vol:25 No.1 (2024).
  • [37] M. Traore, H. M. Tastan, On sequential warped product h-Ricci-Bourguignon solitons, Filomat, ID-67856797, Vol:38 No.19, (2024).
  • [38] M. Traore,, H. M. Tastan and S. Gerdan Aydn, Some characterizations on Gradient Almost h-Ricci-Bourguignon Solitons, Boletim da Sociedade Paranaense de Matemtica, Vol:43 (2025), 1-12.
  • [39] M. M. Tripathi and P. Gupta, t-curvature tensor on a semi-Riemannian manifold, J. Adv. Math. Stud., Vol:4 No.1 (2011), 117-129.
  • [40] M. M. Tripathi, Ricci solitons in contact metric manifold, ArXiv: 0801. 4222 vl [math. D. G.], (2008).
  • [41] K. Yano, On semi-symmetric metric connections, Rev. Roumaine Math. Pure Appl., Vol. 15 (1970), 1579-1586.
  • [42] K. Yano, Concircular Geometry I. Concircular transformations, Math. Institute, Tokyo Imperial Univ. Proc. Vol:16 (1940), 195-200.
  • [43] K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies 32, Princeton University Press, 1953.
  • [44] M. Yıldırım, Semi-symmetric non-metric connections on statistical manifolds, Journal of Geometry and Physics, Vol:176 (2022),
  • [45] M. Yıldırım and G. Ayar, Ricci solitons and gradient Ricci solitons on nearly cosymplectic manifolds, Journal of Universal Mathematics, Vol:4 No.2 (2021), 201-208
  • [46] Y. Ishii, On conharmonic transformations, Tensor N. S., Vol. 7 (1957), 73-80.
  • [47] S. Zamkovoy, Canonical connection on paracontact manifolds, Ann. global Anal. Geom., Vol:36 (2009), 37-60.
There are 47 citations in total.

Details

Primary Language English
Subjects Theoretical and Applied Mechanics in Mathematics
Journal Section Research Article
Authors

Abhıjıt Mandal

Publication Date October 31, 2025
Submission Date March 18, 2025
Acceptance Date May 21, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Mandal, A. (2025). $\eta $-Ricci Bourguignon Soliton on Para-Sasakian Manifolds with SSNM-Connection. Konuralp Journal of Mathematics, 13(2), 223-232.
AMA Mandal A. $\eta $-Ricci Bourguignon Soliton on Para-Sasakian Manifolds with SSNM-Connection. Konuralp J. Math. October 2025;13(2):223-232.
Chicago Mandal, Abhıjıt. “$\eta $-Ricci Bourguignon Soliton on Para-Sasakian Manifolds With SSNM-Connection”. Konuralp Journal of Mathematics 13, no. 2 (October 2025): 223-32.
EndNote Mandal A (October 1, 2025) $\eta $-Ricci Bourguignon Soliton on Para-Sasakian Manifolds with SSNM-Connection. Konuralp Journal of Mathematics 13 2 223–232.
IEEE A. Mandal, “$\eta $-Ricci Bourguignon Soliton on Para-Sasakian Manifolds with SSNM-Connection”, Konuralp J. Math., vol. 13, no. 2, pp. 223–232, 2025.
ISNAD Mandal, Abhıjıt. “$\eta $-Ricci Bourguignon Soliton on Para-Sasakian Manifolds With SSNM-Connection”. Konuralp Journal of Mathematics 13/2 (October2025), 223-232.
JAMA Mandal A. $\eta $-Ricci Bourguignon Soliton on Para-Sasakian Manifolds with SSNM-Connection. Konuralp J. Math. 2025;13:223–232.
MLA Mandal, Abhıjıt. “$\eta $-Ricci Bourguignon Soliton on Para-Sasakian Manifolds With SSNM-Connection”. Konuralp Journal of Mathematics, vol. 13, no. 2, 2025, pp. 223-32.
Vancouver Mandal A. $\eta $-Ricci Bourguignon Soliton on Para-Sasakian Manifolds with SSNM-Connection. Konuralp J. Math. 2025;13(2):223-32.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.