Research Article
BibTex RIS Cite

Ideal Convergence in $2$-Metric Spaces

Year 2025, Volume: 13 Issue: 2, 259 - 263, 31.10.2025

Abstract

In this paper, we firstly introduce the notions of $\mathcal{I}$-convergence and $\mathcal{I}^*$-convergence and also, we investigate some inclusion relations between $\mathcal{I}$-convergence and $\mathcal{I}^*$-convergence in $2$-metric space. Then, we introduce the notions of $\mathcal{I}$-Cauchy sequence and $\mathcal{I}^*$-Cauchy sequence and also, we investigate some inclusion relations between $\mathcal{I}$-Cauchy sequence and $\mathcal{I}^*$-Cauchy sequence in $2$-metric space.

References

  • [1] A. Aliouche and C. Simpson, Fixed points and lines in 2-metric spaces, Adv. Math., 229(1) (2012), 668–690.
  • [2] F. Bas¸ar, Summability Theory and its Applications, Bentham Science Publishers, ˙Istanbul, eISBN: 978-1-60805-252-3, 2012.
  • [3] K. Dems, On I-Cauchy sequence, Real Anal. Exchange, 30 (2004/2005), 123–128.
  • [4] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244.
  • [5] R. Freese and Y. Cho, Geometry of linear 2-normed spaces, Nova Science Publishers, Hauppauge, NY (2001).
  • [6] J.A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313.
  • [7] J.A. Fridy and C. Orhan, Statistical limit superior and inferior, Proc. Amer. Math. Soc., 125 (1997), 3625–3631.
  • [8] S. G¨ahler, 2-metric Raume and ihre topologische strucktur, Math. Nachr., 26 (1963), 115–148.
  • [9] S. G¨ahler, Uber die unifromisieberkeit 2-metrischer Raume, Math.Nachr., 28 (1965), 235 – 244.
  • [10] F. Gezer and S. Karakus¸, I and I-convergent function sequences, Math. Commun., 10 (2005), 71–80.
  • [11] E. Gülle and U. Ulusu, Wijsman deferred invariant statistical and strong p-deferred invariant equivalence of order a, Fundam. J. Math. Appl., 6(4) (2013), 211–217, doi:10.33401/fujma.1364368
  • [12] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, fourth ed., Oxford, 1960.
  • [13] K. Is´eki, Fixed point theorems in 2-metric spaces, Math. Seminar Notes, XIX (1975).
  • [14] M. Khan, On fixed point theorems in 2-metric space, Publ. de l’Institute Math., 41 (1980), 107–112.
  • [15] O . Kisi and E. Guler, I-Cesa`ro summability of a sequence of order a of random variables in probability, Fundam. J. Math. Appl., 1(2) (2018), 157–161, doi:10.33401-fujma.480808-604006
  • [16] O. Kisi, On Iq -convergence in neutrosophic normed spaces, Fundam. J. Math. Appl., 4(2) (2021), 67–76, doi:10.33401/fujma.873029
  • [17] P. Kostyrko, T. ˇ Sal´at and W. Wilczy´nski, I-Convergence, Real Anal. Exchange, 26(2) (2000), 669–686.
  • [18] B.K. Lahiri, P. Das and L.K. Dey, Cantor’s theorem in 2-metric spaces and its applications to fixed point theorems, Taiwanese J. Math., 15(1) (2011), 337–352.
  • [19] Z. Liu and F. Zhang, Characterization of common fixed points in 2-metric spaces, Rostock Math. Kolloq., 55 (2001), 49–64.
  • [20] M. Mursaleen and F. Basar, Sequence Spaces: Topics in Modern Summability Theory, CRC Press, Taylor and Francis Group, Series: Mathematics and Its Applications, Boca Raton, London, New York, 2020.
  • [21] A. Nabiev, S. Pehlivan and M. G¨urdal, On I-Cauchy sequence, Taiwanese J. Math., 11(2) (2007), 569–576.
  • [22] S. V. R.Naidu and J.R.Prasad, Fixed point theorem in 2-metric spaces, Indian J, Pure Appl. Math., 17 (1986), 974–93.
  • [23] S.V.R. Naidu, Some fixed point theorems in metric and 2-metric spaces, Int. J. Math. Math. Sci., 28 (2001), 625–636.
  • [24] F. Nuray, Statistical convergence in 2-metric spaces, J. Classical Anal., 16(2) (2020), 115–123.
  • [25] B. Rhoades, Contraction type mappings on a 2-metric space, Math. Nachr., 91 (1979), 151–155.
  • [26] E. Savas¸, U. Yamancı and M. G¨urdal, I-lacunary statistical convergence of weighted g via modulus functions in 2-normed spaces, Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68(2)(2019), 2324–2332.
  • [27] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.
  • [28] S.L. Singh, B. Tiwari and V. Gupta, Common fixed points of commuting mappings in 2-metric spaces and an application, Math. Nachr., 95 (1980), 293–297.
  • [29] U. Ulusu, F. Nuray and E. D¨undar, I-limit points and I-cluster points of functions defined on amenable semigroups, Fundam. J. Math. Appl., 4(1) (2021), 45–48.
  • [30] U. Yamancı and M. G¨urdal, On lacunary ideal convergence in random n-normed space, J. Math., Volume 2013, Article ID 868457, 8 pages http://dx.doi.org/10.1155/2013/868457
  • [31] U. Yamancı and M, G¨urdal, I-statistical convergence in 2-normed space, Arab J. Math. Sci., 20(1)(2014), 41–47.
  • [32] U. Yamancı, E. Savas¸ and M. G¨urdal, I-localized sequence in two normed spaces, Malaysian J. Math. Sci., 14(3)(2020), 491–503.
  • [33] A. White, 2-Banach spaces, Math. Nachr., 42 (1976), 43–60.

Year 2025, Volume: 13 Issue: 2, 259 - 263, 31.10.2025

Abstract

References

  • [1] A. Aliouche and C. Simpson, Fixed points and lines in 2-metric spaces, Adv. Math., 229(1) (2012), 668–690.
  • [2] F. Bas¸ar, Summability Theory and its Applications, Bentham Science Publishers, ˙Istanbul, eISBN: 978-1-60805-252-3, 2012.
  • [3] K. Dems, On I-Cauchy sequence, Real Anal. Exchange, 30 (2004/2005), 123–128.
  • [4] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241–244.
  • [5] R. Freese and Y. Cho, Geometry of linear 2-normed spaces, Nova Science Publishers, Hauppauge, NY (2001).
  • [6] J.A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313.
  • [7] J.A. Fridy and C. Orhan, Statistical limit superior and inferior, Proc. Amer. Math. Soc., 125 (1997), 3625–3631.
  • [8] S. G¨ahler, 2-metric Raume and ihre topologische strucktur, Math. Nachr., 26 (1963), 115–148.
  • [9] S. G¨ahler, Uber die unifromisieberkeit 2-metrischer Raume, Math.Nachr., 28 (1965), 235 – 244.
  • [10] F. Gezer and S. Karakus¸, I and I-convergent function sequences, Math. Commun., 10 (2005), 71–80.
  • [11] E. Gülle and U. Ulusu, Wijsman deferred invariant statistical and strong p-deferred invariant equivalence of order a, Fundam. J. Math. Appl., 6(4) (2013), 211–217, doi:10.33401/fujma.1364368
  • [12] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, fourth ed., Oxford, 1960.
  • [13] K. Is´eki, Fixed point theorems in 2-metric spaces, Math. Seminar Notes, XIX (1975).
  • [14] M. Khan, On fixed point theorems in 2-metric space, Publ. de l’Institute Math., 41 (1980), 107–112.
  • [15] O . Kisi and E. Guler, I-Cesa`ro summability of a sequence of order a of random variables in probability, Fundam. J. Math. Appl., 1(2) (2018), 157–161, doi:10.33401-fujma.480808-604006
  • [16] O. Kisi, On Iq -convergence in neutrosophic normed spaces, Fundam. J. Math. Appl., 4(2) (2021), 67–76, doi:10.33401/fujma.873029
  • [17] P. Kostyrko, T. ˇ Sal´at and W. Wilczy´nski, I-Convergence, Real Anal. Exchange, 26(2) (2000), 669–686.
  • [18] B.K. Lahiri, P. Das and L.K. Dey, Cantor’s theorem in 2-metric spaces and its applications to fixed point theorems, Taiwanese J. Math., 15(1) (2011), 337–352.
  • [19] Z. Liu and F. Zhang, Characterization of common fixed points in 2-metric spaces, Rostock Math. Kolloq., 55 (2001), 49–64.
  • [20] M. Mursaleen and F. Basar, Sequence Spaces: Topics in Modern Summability Theory, CRC Press, Taylor and Francis Group, Series: Mathematics and Its Applications, Boca Raton, London, New York, 2020.
  • [21] A. Nabiev, S. Pehlivan and M. G¨urdal, On I-Cauchy sequence, Taiwanese J. Math., 11(2) (2007), 569–576.
  • [22] S. V. R.Naidu and J.R.Prasad, Fixed point theorem in 2-metric spaces, Indian J, Pure Appl. Math., 17 (1986), 974–93.
  • [23] S.V.R. Naidu, Some fixed point theorems in metric and 2-metric spaces, Int. J. Math. Math. Sci., 28 (2001), 625–636.
  • [24] F. Nuray, Statistical convergence in 2-metric spaces, J. Classical Anal., 16(2) (2020), 115–123.
  • [25] B. Rhoades, Contraction type mappings on a 2-metric space, Math. Nachr., 91 (1979), 151–155.
  • [26] E. Savas¸, U. Yamancı and M. G¨urdal, I-lacunary statistical convergence of weighted g via modulus functions in 2-normed spaces, Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68(2)(2019), 2324–2332.
  • [27] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.
  • [28] S.L. Singh, B. Tiwari and V. Gupta, Common fixed points of commuting mappings in 2-metric spaces and an application, Math. Nachr., 95 (1980), 293–297.
  • [29] U. Ulusu, F. Nuray and E. D¨undar, I-limit points and I-cluster points of functions defined on amenable semigroups, Fundam. J. Math. Appl., 4(1) (2021), 45–48.
  • [30] U. Yamancı and M. G¨urdal, On lacunary ideal convergence in random n-normed space, J. Math., Volume 2013, Article ID 868457, 8 pages http://dx.doi.org/10.1155/2013/868457
  • [31] U. Yamancı and M, G¨urdal, I-statistical convergence in 2-normed space, Arab J. Math. Sci., 20(1)(2014), 41–47.
  • [32] U. Yamancı, E. Savas¸ and M. G¨urdal, I-localized sequence in two normed spaces, Malaysian J. Math. Sci., 14(3)(2020), 491–503.
  • [33] A. White, 2-Banach spaces, Math. Nachr., 42 (1976), 43–60.
There are 33 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions
Journal Section Research Article
Authors

Zeliha Afacan This is me

Erdinç Dündar 0000-0002-0545-7486

Publication Date October 31, 2025
Submission Date September 29, 2025
Acceptance Date October 29, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Afacan, Z., & Dündar, E. (2025). Ideal Convergence in $2$-Metric Spaces. Konuralp Journal of Mathematics, 13(2), 259-263.
AMA Afacan Z, Dündar E. Ideal Convergence in $2$-Metric Spaces. Konuralp J. Math. October 2025;13(2):259-263.
Chicago Afacan, Zeliha, and Erdinç Dündar. “Ideal Convergence in $2$-Metric Spaces”. Konuralp Journal of Mathematics 13, no. 2 (October 2025): 259-63.
EndNote Afacan Z, Dündar E (October 1, 2025) Ideal Convergence in $2$-Metric Spaces. Konuralp Journal of Mathematics 13 2 259–263.
IEEE Z. Afacan and E. Dündar, “Ideal Convergence in $2$-Metric Spaces”, Konuralp J. Math., vol. 13, no. 2, pp. 259–263, 2025.
ISNAD Afacan, Zeliha - Dündar, Erdinç. “Ideal Convergence in $2$-Metric Spaces”. Konuralp Journal of Mathematics 13/2 (October2025), 259-263.
JAMA Afacan Z, Dündar E. Ideal Convergence in $2$-Metric Spaces. Konuralp J. Math. 2025;13:259–263.
MLA Afacan, Zeliha and Erdinç Dündar. “Ideal Convergence in $2$-Metric Spaces”. Konuralp Journal of Mathematics, vol. 13, no. 2, 2025, pp. 259-63.
Vancouver Afacan Z, Dündar E. Ideal Convergence in $2$-Metric Spaces. Konuralp J. Math. 2025;13(2):259-63.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.