Research Article
BibTex RIS Cite

Year 2025, Volume: 13 Issue: 2, 134 - 140, 31.10.2025

Abstract

References

  • [1] T. Ando, Matrix Young inequality, Oper Theory A dv Appl., 75(1995), 33-38.
  • [2] M. Bakherad and M. S. Moslehian, Reverses and variations of Heinz inequality, Linear Multilinear Algebra., 63(2015), n. 10, 1972-1980.
  • [3] R. Bhatia, Matrix Analysis, Springer-Verlag, New-York, 1997.
  • [4] R. Bhatia, R. Parthasarathy, Positive definite functions and operators inequalities, Bull. London Math. Soc., 32(2000), 214-228.
  • [5] R. Bhatia, F. Kittaneh, Notes on matrix arithmetic-geometric mean inequalities, Linear Multilinear Algebra Appl., 308( 2000), 203-211.
  • [6] S. Furuichi, et.al., Generalized reverse Young and Heinz inequalities, Bull. Malaysian Math. Sci. Soc., 42(2019), 267-284.
  • [7] X. Hu, Young type inequalities for matrices, Journal of East China Normal University, 4(2012), 12-17.
  • [8] O. Hirzallah and F. Kittaneh , Matrix Young inequalities for the Hilbert-Schmidt norm, Linear Algebra Appl, 308 (2000), 77-84.
  • [9] X. Hu and J. Xue, A note on reveres of Young type inequalities, J. Inequal. Appl., (2015), n. 98. 1-6.
  • [10] C. He, L. Zou and S. Qaisar, On improved arithmetic-geometric mean and Heinz inequalities for matrices, J. Math. Ineq., 6(2012), n. 3, 453-459.
  • [11] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl., 361(2010), 262-269.
  • [12] F. Kittaneh, On some operator inequalities, Linear Algebra Appl, 208/209(1994), 19-28.
  • [13] H. Kosaki, Arithmetic-geometric mean and related inequality for operators, J. Funct. Anal, 156(1998), 429-451.
  • [14] L. Nasiri, M. Shakoori and W. Liao, A note on the Young type inequalities, Int. J. Nonline. Anal. Appl., 8 (2017), n. 1, 261-267.
  • [15] L. Nasiri and W. Liao, The new reverses of Young type inequalities for numbers, matrices and operators, Oper. Matrices, 12(2018), n. 4, 1063-1071.
  • [16] M. Sababheh and D. Choi, A complete refinement of Youngs inequality, J. Math. Anal. Appl., 440(2016), 379-393.
  • [17] M. Tominago, Spechts ratio in the Young inequality, Sci. Math. Japon., 5 (2001), 525-530.
  • [18] J. L. Wu and J. G. Zhao, Operator inequalities and reverse inequalities related to the Kittaneh and Manasrah inequalities, Linear Multilinear Algebra, 62(2014), n. 7, 884-894.
  • [19] H. Zuo, G. Shi and M. Fujii, Refined Young type inequality with Kantorovich constant, J. Math. Inequal, 5, (2011), n. 4, 551-556.
  • [20] X. Zhan, Inequalities for unitarily invariant norms, SIAM J. Matrix Anal. Appl., 3(1998), 466-470.

Another Version of Young Inequality Applying the Supplemental Young Inequality

Year 2025, Volume: 13 Issue: 2, 134 - 140, 31.10.2025

Abstract

In this note, we give the further reverses of the Young type inequalities for non-negative real scalars,
using the supplemental Young inequality
\begin{align*}
a^{\nu}b^{1-\nu} \geqslant \nu a + (1-\nu) b,
\end{align*}
where $a, b \geqslant 0$ and $ \nu \notin [0,1]$.
Making use of them, some matrix inequalities for Hilbert-Schmidt norm and trace norm are deduced.

References

  • [1] T. Ando, Matrix Young inequality, Oper Theory A dv Appl., 75(1995), 33-38.
  • [2] M. Bakherad and M. S. Moslehian, Reverses and variations of Heinz inequality, Linear Multilinear Algebra., 63(2015), n. 10, 1972-1980.
  • [3] R. Bhatia, Matrix Analysis, Springer-Verlag, New-York, 1997.
  • [4] R. Bhatia, R. Parthasarathy, Positive definite functions and operators inequalities, Bull. London Math. Soc., 32(2000), 214-228.
  • [5] R. Bhatia, F. Kittaneh, Notes on matrix arithmetic-geometric mean inequalities, Linear Multilinear Algebra Appl., 308( 2000), 203-211.
  • [6] S. Furuichi, et.al., Generalized reverse Young and Heinz inequalities, Bull. Malaysian Math. Sci. Soc., 42(2019), 267-284.
  • [7] X. Hu, Young type inequalities for matrices, Journal of East China Normal University, 4(2012), 12-17.
  • [8] O. Hirzallah and F. Kittaneh , Matrix Young inequalities for the Hilbert-Schmidt norm, Linear Algebra Appl, 308 (2000), 77-84.
  • [9] X. Hu and J. Xue, A note on reveres of Young type inequalities, J. Inequal. Appl., (2015), n. 98. 1-6.
  • [10] C. He, L. Zou and S. Qaisar, On improved arithmetic-geometric mean and Heinz inequalities for matrices, J. Math. Ineq., 6(2012), n. 3, 453-459.
  • [11] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl., 361(2010), 262-269.
  • [12] F. Kittaneh, On some operator inequalities, Linear Algebra Appl, 208/209(1994), 19-28.
  • [13] H. Kosaki, Arithmetic-geometric mean and related inequality for operators, J. Funct. Anal, 156(1998), 429-451.
  • [14] L. Nasiri, M. Shakoori and W. Liao, A note on the Young type inequalities, Int. J. Nonline. Anal. Appl., 8 (2017), n. 1, 261-267.
  • [15] L. Nasiri and W. Liao, The new reverses of Young type inequalities for numbers, matrices and operators, Oper. Matrices, 12(2018), n. 4, 1063-1071.
  • [16] M. Sababheh and D. Choi, A complete refinement of Youngs inequality, J. Math. Anal. Appl., 440(2016), 379-393.
  • [17] M. Tominago, Spechts ratio in the Young inequality, Sci. Math. Japon., 5 (2001), 525-530.
  • [18] J. L. Wu and J. G. Zhao, Operator inequalities and reverse inequalities related to the Kittaneh and Manasrah inequalities, Linear Multilinear Algebra, 62(2014), n. 7, 884-894.
  • [19] H. Zuo, G. Shi and M. Fujii, Refined Young type inequality with Kantorovich constant, J. Math. Inequal, 5, (2011), n. 4, 551-556.
  • [20] X. Zhan, Inequalities for unitarily invariant norms, SIAM J. Matrix Anal. Appl., 3(1998), 466-470.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Leila Nasiri

Mahmood Shakoori This is me

Publication Date October 31, 2025
Submission Date December 24, 2020
Acceptance Date October 10, 2024
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Nasiri, L., & Shakoori, M. (2025). Another Version of Young Inequality Applying the Supplemental Young Inequality. Konuralp Journal of Mathematics, 13(2), 134-140.
AMA Nasiri L, Shakoori M. Another Version of Young Inequality Applying the Supplemental Young Inequality. Konuralp J. Math. October 2025;13(2):134-140.
Chicago Nasiri, Leila, and Mahmood Shakoori. “Another Version of Young Inequality Applying the Supplemental Young Inequality”. Konuralp Journal of Mathematics 13, no. 2 (October 2025): 134-40.
EndNote Nasiri L, Shakoori M (October 1, 2025) Another Version of Young Inequality Applying the Supplemental Young Inequality. Konuralp Journal of Mathematics 13 2 134–140.
IEEE L. Nasiri and M. Shakoori, “Another Version of Young Inequality Applying the Supplemental Young Inequality”, Konuralp J. Math., vol. 13, no. 2, pp. 134–140, 2025.
ISNAD Nasiri, Leila - Shakoori, Mahmood. “Another Version of Young Inequality Applying the Supplemental Young Inequality”. Konuralp Journal of Mathematics 13/2 (October2025), 134-140.
JAMA Nasiri L, Shakoori M. Another Version of Young Inequality Applying the Supplemental Young Inequality. Konuralp J. Math. 2025;13:134–140.
MLA Nasiri, Leila and Mahmood Shakoori. “Another Version of Young Inequality Applying the Supplemental Young Inequality”. Konuralp Journal of Mathematics, vol. 13, no. 2, 2025, pp. 134-40.
Vancouver Nasiri L, Shakoori M. Another Version of Young Inequality Applying the Supplemental Young Inequality. Konuralp J. Math. 2025;13(2):134-40.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.