Research Article
BibTex RIS Cite

COMPUTATIONAL FLUID DYNAMIC ANALYSIS OF PRODUCT MOISTURE RATE’S IN THE SOLAR ENERGY DRYING SYSTEM

Year 2019, Volume: 22 - Special Issue, 78 - 87, 29.11.2019
https://doi.org/10.17780/ksujes.597839

Abstract

In this study, a food drying system with air heated solar collector is designed. In the designed drying system, the
apples are dried. Moisture content (MCk), drying rate (DR) and humidity (MR) values of dried apple slices were
calculated. In the experiments, dehydration of the dried apple slices was simulated by the numerical analysis program.
The model is designed for drying analysis. In the first case, the diameter of the apple slice is 60mm, the thickness is
14mm and the surface temperature is 4°C. The inlet temperature of the drying air is 56.4°C and the air velocity is 1.6
m/s. The velocity and time, moisture content and temperature change data of the dry matter were compared with the
available experimental studies. The values obtained as a result of the simulation and the experimental studies were
similar.

References

  • Adrover, A., Brasiello, A., & Ponso, G. (2019). A moving boundary model for food isothermal drying and shrinkage: A shortcut numerical method for estimating the shrinkage factor. Journal of Food Engineering, 244(September 2018), 212–219. https://doi.org/10.1016/j.jfoodeng.2018.09.030
  • Akay, O. E., Gizlenci, Ö. S., Sönmez, K. (2018). Bir Kurutma Sisteminde Kullanılan Zeolit Kurutma Yatağının Adsorpsiyon Performansının Deneysel Olarak İncelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 21(1), 100-106.
  • Akpinar, E. K., & Bicer, Y. (2008). Mathematical modelling of thin layer drying process of long green pepper in solar dryer and under open sun. Energy Conversion and Management, 49(6), 1367-1375.
  • Akpınar, E.K., (2006). Experimental investigation of convective heat transfer coefficient of various agricultural products under open sun drying. International Journal of Green Energy, 1(4): 429- 440.
  • Chen, Q., Bi, J., Wu, X., Yi, J., Zhou, L., & Zhou, Y. (2015). Drying kinetics and quality attributes of jujube (Zizyphus jujuba Miller) slices dried by hot-air and short-and medium-wave infrared radiation. LWT - Food Science and Technology, 64(2), 759–766. https://doi.org/10.1016/j.lwt.2015.06.071
  • Defraeye, T., & Martynenko, A. (2019). Electrohydrodynamic drying of multiple food products: Evaluating the potential of emitter-collector electrode configurations for upscaling. Journal of Food Engineering, 240(July 2018), 38–42. https://doi.org/10.1016/j.jfoodeng.2018.07.011
  • Elgamal, R., Ronsse, F., Radwan, S. M., Pieters, J. G. (2014). Coupling CFD and diffusion models for analyzing the convective drying behavior of a single rice kernel. Drying Technology, 32(3), 311-320.
  • Hacıhafızoğlu, O., Susantez, Ç., Kahveci, K., & Akyol, E. (2015). Simulation of Intermittent Drying of Corn. In World Congress on Mechanical, Chemical, and Material Engineering (Vol. 1900, pp. 323-1).
  • Hashim, N., Daniel, O., & Rahaman, E. (2014). A Preliminary Study: Kinetic Model of Drying Process of Pumpkins (Cucurbita Moschata) in a Convective Hot Air Dryer. Agriculture and Agricultural Science Procedia, 2, 345–352. https://doi.org/10.1016/j.aaspro.2014.11.048
  • Kamer, M. S., Şahin, H. E., Sönmez, K., İmal, M., Kaya A. (2016). Kabak ve patlıcan dilimlerinin kuruma davranışının deneysel incelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 19(2), 1-8.
  • Karacabey, E. and Buzrul, S., (2017). Modeling and Predicting the Drying Kinetics of Apple and Pear: Application of the Weibull Model. Chemical Engineering Communications, 204(5), 573-579.
  • Kumar, C., Joardder, M. U., Farrell, T. W., Millar, G. J., & Karim, A. (2018). A porous media transport model for apple drying. Biosystems engineering, 176, 12-25.
  • Reddy, R. S., Ravula, P. R., Arepally, D., Munagala, S. R., & Golla, S. (2017). Drying kinetics and modelling of mass transfer in thin layer convective drying of pineapple. Chemical Science International Journal, 1-12.
  • Yuan, Y., Tan, L., Xu, Y., Yuan, Y., & Dong, J. (2019). Numerical and experimental study on drying shrinkage-deformation of apple slices during process of heat-mass transfer. International Journal of Thermal Sciences, 136(September 2018), 539–548. https://doi.org/10.1016/j.ijthermalsci.2018.10.042
  • Zhang, M.G., Li, W.H., Liu, M.Q. (2005). Adaptive PID control strategy based on RBF neural network identification, IEEE International Conference on Neural Networks and Brain, 1854-1857.

GÜNEŞ ENERJİSİ DESTEKLİ KURUTMA SİSTEMİNDE ÜRÜN NEM ORANININ HESAPLAMALI AKIŞKANLAR DİNAMİĞİ ANALİZİ

Year 2019, Volume: 22 - Special Issue, 78 - 87, 29.11.2019
https://doi.org/10.17780/ksujes.597839

Abstract

Bu çalışmada hava ısıtmalı güneş kollektörlü bir gıda kurutma sistemi tasarlanmıştır. Tasarlanan kurutma sisteminde
elma kurutulmuştur. Kurutulan elma dilimlerinin nem içeriği (MCk), kuruma hızı (DR) ve nem oranı (MR) değerleri
hesaplanmıştır. Deneylerde kurutulan elma dilimlerinin dehidrasyonu sayısal analiz programı ile simüle edilmiştir.
Kurutma analizi için birebir ölçülerde model oluşturulmuştur. İlk durumda elma diliminin çapı 60mm, kalınlığı
14mm ve yüzey sıcaklığı 4°C dir. Kurutma havasının giriş sıcaklığı 56.4°C ve hava hızı 1.6m/s dir. Analiz sonucunda
ele edilen kuruma hızı ve zamanı, nem içeriği ve sıcaklık değişimi verileri mevcut deneysel çalışmalar ile
karşılaştırılmıştır. Simülasyon sonucu elde edilen değerler ile deneysel çalışmalar sonucu hesaplanan değerler
benzerlik göstermiştir.

References

  • Adrover, A., Brasiello, A., & Ponso, G. (2019). A moving boundary model for food isothermal drying and shrinkage: A shortcut numerical method for estimating the shrinkage factor. Journal of Food Engineering, 244(September 2018), 212–219. https://doi.org/10.1016/j.jfoodeng.2018.09.030
  • Akay, O. E., Gizlenci, Ö. S., Sönmez, K. (2018). Bir Kurutma Sisteminde Kullanılan Zeolit Kurutma Yatağının Adsorpsiyon Performansının Deneysel Olarak İncelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 21(1), 100-106.
  • Akpinar, E. K., & Bicer, Y. (2008). Mathematical modelling of thin layer drying process of long green pepper in solar dryer and under open sun. Energy Conversion and Management, 49(6), 1367-1375.
  • Akpınar, E.K., (2006). Experimental investigation of convective heat transfer coefficient of various agricultural products under open sun drying. International Journal of Green Energy, 1(4): 429- 440.
  • Chen, Q., Bi, J., Wu, X., Yi, J., Zhou, L., & Zhou, Y. (2015). Drying kinetics and quality attributes of jujube (Zizyphus jujuba Miller) slices dried by hot-air and short-and medium-wave infrared radiation. LWT - Food Science and Technology, 64(2), 759–766. https://doi.org/10.1016/j.lwt.2015.06.071
  • Defraeye, T., & Martynenko, A. (2019). Electrohydrodynamic drying of multiple food products: Evaluating the potential of emitter-collector electrode configurations for upscaling. Journal of Food Engineering, 240(July 2018), 38–42. https://doi.org/10.1016/j.jfoodeng.2018.07.011
  • Elgamal, R., Ronsse, F., Radwan, S. M., Pieters, J. G. (2014). Coupling CFD and diffusion models for analyzing the convective drying behavior of a single rice kernel. Drying Technology, 32(3), 311-320.
  • Hacıhafızoğlu, O., Susantez, Ç., Kahveci, K., & Akyol, E. (2015). Simulation of Intermittent Drying of Corn. In World Congress on Mechanical, Chemical, and Material Engineering (Vol. 1900, pp. 323-1).
  • Hashim, N., Daniel, O., & Rahaman, E. (2014). A Preliminary Study: Kinetic Model of Drying Process of Pumpkins (Cucurbita Moschata) in a Convective Hot Air Dryer. Agriculture and Agricultural Science Procedia, 2, 345–352. https://doi.org/10.1016/j.aaspro.2014.11.048
  • Kamer, M. S., Şahin, H. E., Sönmez, K., İmal, M., Kaya A. (2016). Kabak ve patlıcan dilimlerinin kuruma davranışının deneysel incelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 19(2), 1-8.
  • Karacabey, E. and Buzrul, S., (2017). Modeling and Predicting the Drying Kinetics of Apple and Pear: Application of the Weibull Model. Chemical Engineering Communications, 204(5), 573-579.
  • Kumar, C., Joardder, M. U., Farrell, T. W., Millar, G. J., & Karim, A. (2018). A porous media transport model for apple drying. Biosystems engineering, 176, 12-25.
  • Reddy, R. S., Ravula, P. R., Arepally, D., Munagala, S. R., & Golla, S. (2017). Drying kinetics and modelling of mass transfer in thin layer convective drying of pineapple. Chemical Science International Journal, 1-12.
  • Yuan, Y., Tan, L., Xu, Y., Yuan, Y., & Dong, J. (2019). Numerical and experimental study on drying shrinkage-deformation of apple slices during process of heat-mass transfer. International Journal of Thermal Sciences, 136(September 2018), 539–548. https://doi.org/10.1016/j.ijthermalsci.2018.10.042
  • Zhang, M.G., Li, W.H., Liu, M.Q. (2005). Adaptive PID control strategy based on RBF neural network identification, IEEE International Conference on Neural Networks and Brain, 1854-1857.
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Erdem Alıç 0000-0002-2852-0353

Mehmet Daş 0000-0002-4143-9226

Publication Date November 29, 2019
Submission Date July 29, 2019
Published in Issue Year 2019Volume: 22 - Special Issue

Cite

APA Alıç, E., & Daş, M. (2019). GÜNEŞ ENERJİSİ DESTEKLİ KURUTMA SİSTEMİNDE ÜRÜN NEM ORANININ HESAPLAMALI AKIŞKANLAR DİNAMİĞİ ANALİZİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 22, 78-87. https://doi.org/10.17780/ksujes.597839