Bu çalışmanın amacı, grafen bazlı hibrit bir malzemenin katı faz ekstraksiyon işleminde diğer maddeleri çekebilen ve ayırabilen bir madde olarak kullanılmasının etkinliğini değerlendirmektir. Amaç, Pb(II) ve Hg(II) metal iyonlarının insan sağlığı ve çevre üzerindeki potansiyel olumsuz etkilerini azaltmaktır. Grafen oksit, güçlü oksitleyicilerin kullanımını içeren ilk aşamada Hummers prosesi kullanılarak grafit üzerinde üretilmiştir. Daha sonra, GO silanize etmek için 3-(trimetoksisilen)propilamin ile muamele edilmiştir. Daha sonra silanize edilmiş GO, grafen-oksit-Schiff baz malzemesini oluşturmak için 3,5-dikloro-salisilaldehit ile birleştirildi. Bileşiklerin yapısı sentezin her aşamasında UV-Vis spektroskopisi, Fourier dönüşümlü kızılötesi spektroskopisi, X-ışını kırınımı, taramalı elektron mikroskopisi, transmisyon elektron mikroskopisi, termogravimetrik analiz ve enerji dağılımlı X-ışını spektroskopisi gibi bir dizi analitik teknik kullanılarak belirlendi. Çalışmada pH, sıcaklık, temas süresi ve diğer malzeme özelliklerinin adsorpsiyon üzerindeki etkisi araştırılmıştır. Çalışma, grafen bazlı hibrit malzemenin hem atık hem de içme suyundan ağır metal iyonlarını adsorbe etmede oldukça verimli olduğunu göstermiştir. Bu durum, ağır metal kirleticileri etkili bir şekilde uzaklaştırabildiği için grafenin çevresel uygulamalardaki potansiyelini göstermektedir.
Abd Elnabi, M. K., Elkaliny, N. E., Elyazied, M. M., Azab, S. H., Elkhalifa, S. A., Elmasry, S., ... & Mahmoud, Y. A. G. (2023). Toxicity of heavy metals and recent advances in their removal: A review. Toxics, 11(7), 580. https://doi.org/10.3390/toxics11070580
Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity and bioaccumulation. Journal of Chemistry, 2019. https://doi.org/10.1155/2019/6730305
Aliasgharpour, M., & Marjan, R. F. (2013). Trace elements in human nutrition: A review. The Journal of Medical Investigation. 2(3), 115-128. https://doi.org/10.4103/ijpvm.IJPVM_48_19
Bal, M., Tümer, M., & Köse, M. (2024). Synthesis of reduced graphene oxide-based hybrid materials containing imine bonds: Color properties and chemosensory properties against some anions. Materials Science and Engineering: B, 303, 117278. https://doi.org/10.1016/j.mseb.2024.117278
Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi M. (2021) Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium and arsenic. Frontiers in Pharmacology, 12, 643972. https://doi.org/10.1016/j.mseb.2024.117278
Bhattacharya, P. T., Misra, S. R., & Hussain, M. (2016). Nutritional aspects of essential trace elements in oral health and disease: An extensive review. Scientifica, 2016. https://doi.org/10.1155/2016/5464373
Gabriel, M., & Elena, L. U. (2022). "Toxicity of Heavy Metals," Chapters, in: Hosam M. Saleh & Amal I. Hassan (ed.), Environmental Impact and Remediation of Heavy Metals, IntechOpen. https://doi.org/10.5772/intechopen.102441
Hou, S., Su, S., Kasner, M. L., Shah, P., & Patel K., (2010). Formation of highly stable dispersions of silane-functionalized reduced graphene oxide Chemical Physics, 501(1-3), 68-74. https://doi.org/10.1016/j.cplett.2010.10.051
Hummers, Jr., William, S., & Richard E. O. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339-1339. https://doi.org/10.1021/ja01539a017
Ingrassia, E. B., Fiorentini, E. F., Wuilloud, R. G., Agostini, E., Oller, A. L. W., & Escudero, L. B. (2024). Bionanomaterial composed of Bradyrhizobium japonicum and graphene oxide for determination of mercury in water and fruit juice samples. Journal of Food Composition and Analysis, 127, 105967. https://doi.org/10.1016/j.jfca.2024.105967
Jamali, M. R., Assadi, Y., Shemirani, F., & Hosseini, M. R. M. (2006). Synthesis of salicylaldehyde-modified mesoporous silica and its application as a new sorbent for separation, preconcentration and determination of uranium byinductively coupled plasma atomic emission spectrometry. Analytica chimica, 579(1), 68-73. https://doi.org/10.1016/j.aca.2006.07.006
Lucena, R. (2023). Janusz Pawliszyn (Ed.): Evolution of solid phase microextraction technology. https://doi.org/10.1007/s00216-023-04959-2
Masindi, V., & Muedi, K.L. (2018) Environmental contamination by heavy metals. In: Saleh HEDM, Aglan RF, editors. Heavy Metals. Chichester: IntechOpen. 115-133. https://dx.doi.org/ 10.5772/intechopen.76082
Mitra, S., Chakraborty, A.J., Tareq, A.M., Emran, T.B., Nainu, F., Khusro, A., Idris, A.M., Khandaker, M.U., Osman, H., Alhumaydhi, F.A., & Jesus S.G. (2022). Impact of Heavy Metals on the Environment and Human Health: Novel Therapeutic Insights to Counter the Toxicity. J. King Saud Univ.-Sci. 34(3), 101865. https://doi.org/10.1016/j.jksus.2022.101865
Pasupuleti, R. R., & Huang, Y. L. (2023). Recent applications of atomic spectroscopy coupled with magnetic solid‐phase extraction techniques for heavy metal determination in environmental samples: A review. Journal of the Chinese Chemical Society, 70, 1326–1337. https://doi.org/10.1002/jccs.202300029
Zhou, W., Wieczorek, M. N., Javanmardi, H., & Pawliszyn, J. (2023). Direct solid-phase microextraction-mass spectrometry facilitates rapid analysis and green analytical chemistry. TrAC Trends in Analytical Chemistry, 166, 117167. https://doi.org/10.1016/j.trac.2023.117167
INVESTIGATION OF THE EFFECTIVENESS IN THE SOLID PHASE EXTRACTION STUDIES OF THE GRAPHENE HYBRIDS
Year 2024,
Volume: 27 Issue: 3, 1033 - 1043, 03.09.2024
The objective of this study is to evaluate the effectiveness of using a graphene-based hybrid material as a substance that can attract and separate other substances in a solid-phase extraction process. The goal is to reduce the potential adverse effects of Pb(II) and Hg(II) metal ions on human health and the environment. Graphene oxide was produced on graphite using the Hummers process during the early phase, which involved the use of potent oxidizers. Afterwards, graphene oxide (GO) was treated with 3-(trimethoxycylene)propylamine to silanize it. Then, the silanized GO was combined with 3,5-dichloro-salisylaldehyde to create the graphen-Schiff base material. The structure of the compounds was determined at each stage of synthesis using a range of analytical techniques, such as UV-Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and energy dispersive X-ray spectroscopy. The study investigated the influence of pH, temperature, contact time, and other material characteristics on adsorption. The study demonstrated that the graphene-based hybrid material is highly efficient at adsorbing heavy metal ions from both waste and drinking water. This demonstrates the potential of graphene in environmental applications, as it can effectively remove heavy metal contaminants.
Abd Elnabi, M. K., Elkaliny, N. E., Elyazied, M. M., Azab, S. H., Elkhalifa, S. A., Elmasry, S., ... & Mahmoud, Y. A. G. (2023). Toxicity of heavy metals and recent advances in their removal: A review. Toxics, 11(7), 580. https://doi.org/10.3390/toxics11070580
Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity and bioaccumulation. Journal of Chemistry, 2019. https://doi.org/10.1155/2019/6730305
Aliasgharpour, M., & Marjan, R. F. (2013). Trace elements in human nutrition: A review. The Journal of Medical Investigation. 2(3), 115-128. https://doi.org/10.4103/ijpvm.IJPVM_48_19
Bal, M., Tümer, M., & Köse, M. (2024). Synthesis of reduced graphene oxide-based hybrid materials containing imine bonds: Color properties and chemosensory properties against some anions. Materials Science and Engineering: B, 303, 117278. https://doi.org/10.1016/j.mseb.2024.117278
Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi M. (2021) Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium and arsenic. Frontiers in Pharmacology, 12, 643972. https://doi.org/10.1016/j.mseb.2024.117278
Bhattacharya, P. T., Misra, S. R., & Hussain, M. (2016). Nutritional aspects of essential trace elements in oral health and disease: An extensive review. Scientifica, 2016. https://doi.org/10.1155/2016/5464373
Gabriel, M., & Elena, L. U. (2022). "Toxicity of Heavy Metals," Chapters, in: Hosam M. Saleh & Amal I. Hassan (ed.), Environmental Impact and Remediation of Heavy Metals, IntechOpen. https://doi.org/10.5772/intechopen.102441
Hou, S., Su, S., Kasner, M. L., Shah, P., & Patel K., (2010). Formation of highly stable dispersions of silane-functionalized reduced graphene oxide Chemical Physics, 501(1-3), 68-74. https://doi.org/10.1016/j.cplett.2010.10.051
Hummers, Jr., William, S., & Richard E. O. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339-1339. https://doi.org/10.1021/ja01539a017
Ingrassia, E. B., Fiorentini, E. F., Wuilloud, R. G., Agostini, E., Oller, A. L. W., & Escudero, L. B. (2024). Bionanomaterial composed of Bradyrhizobium japonicum and graphene oxide for determination of mercury in water and fruit juice samples. Journal of Food Composition and Analysis, 127, 105967. https://doi.org/10.1016/j.jfca.2024.105967
Jamali, M. R., Assadi, Y., Shemirani, F., & Hosseini, M. R. M. (2006). Synthesis of salicylaldehyde-modified mesoporous silica and its application as a new sorbent for separation, preconcentration and determination of uranium byinductively coupled plasma atomic emission spectrometry. Analytica chimica, 579(1), 68-73. https://doi.org/10.1016/j.aca.2006.07.006
Lucena, R. (2023). Janusz Pawliszyn (Ed.): Evolution of solid phase microextraction technology. https://doi.org/10.1007/s00216-023-04959-2
Masindi, V., & Muedi, K.L. (2018) Environmental contamination by heavy metals. In: Saleh HEDM, Aglan RF, editors. Heavy Metals. Chichester: IntechOpen. 115-133. https://dx.doi.org/ 10.5772/intechopen.76082
Mitra, S., Chakraborty, A.J., Tareq, A.M., Emran, T.B., Nainu, F., Khusro, A., Idris, A.M., Khandaker, M.U., Osman, H., Alhumaydhi, F.A., & Jesus S.G. (2022). Impact of Heavy Metals on the Environment and Human Health: Novel Therapeutic Insights to Counter the Toxicity. J. King Saud Univ.-Sci. 34(3), 101865. https://doi.org/10.1016/j.jksus.2022.101865
Pasupuleti, R. R., & Huang, Y. L. (2023). Recent applications of atomic spectroscopy coupled with magnetic solid‐phase extraction techniques for heavy metal determination in environmental samples: A review. Journal of the Chinese Chemical Society, 70, 1326–1337. https://doi.org/10.1002/jccs.202300029
Zhou, W., Wieczorek, M. N., Javanmardi, H., & Pawliszyn, J. (2023). Direct solid-phase microextraction-mass spectrometry facilitates rapid analysis and green analytical chemistry. TrAC Trends in Analytical Chemistry, 166, 117167. https://doi.org/10.1016/j.trac.2023.117167
Mohammed, Z. A., Kılıçaslan, D., & Karabörk, M. (2024). INVESTIGATION OF THE EFFECTIVENESS IN THE SOLID PHASE EXTRACTION STUDIES OF THE GRAPHENE HYBRIDS. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 1033-1043. https://doi.org/10.17780/ksujes.1453587