Review
BibTex RIS Cite

MADENCİLİK SÜREÇLERİNDE MEMBRAN TEKNOLOJİLERİ VE UYGULAMALARI

Year 2021, , 227 - 237, 21.12.2021
https://doi.org/10.30797/madencilik.885042

Abstract

Madencilikte membranlar, madencilik atıksularının arıtılması, atıksulardan değerli metal kazanımı, yüklü liç çözeltilerinin konsantrasyonu ve değerli metallerin kazanımı, Asit Maden Drenajı (AMD) arıtımı, asit, kostik ve siyanür geri kazanımı gibi farklı alanlarda kullanılmaktadır. Madencilikte membranlar, düşük maliyetli, kolay işletilebilir, çevreci, seçici, yüksek giderim verimi ve daha az yer kaplaması nedeniyle tercih edilmektedir. Bu çalışmada, madencilik endüstrisi tarafından Dünya’da ve ülkemizde kullanılmakta olan membran uygulamaları membran teknolojisindeki son gelişmeler ışığında değerlendirilmiştir. Buna göre son geliştirilen yenilikçi membran proseslerinin üretilmesi ile membranların kritik özellikleri iyileştirilmiştir. Membran maliyetleri ve çalışma basınçları önemli oranda azalmış, tıkanma ve kirlenme sorunu kontrol edilebilir duruma gelmiştir. Böylece küresel ölçekte, madencilik endüstrisinde farklı amaçlarla membran kullanımı yaygınlaşmış ve ideal bir yöntem haline gelmiştir. Ülkemizde ise devam eden çalışmalarla birlikte yakın zamanda bu teknolojinin madencilikte yaygınlaşağı değerlendirilmektedir

Thanks

Yazar, MEM-TEK’de araştırma yapmama destek veren Prof. Dr. İsmail Koyuncu’ya (İTÜ) ve yazım aşamasında destek veren Thierno Saidou Barry’ye teşekkür eder.

References

  • Agioutantis, Z., 2001. Book of Proceedings of İnternational Workshop on New Frontiers in Reclamation: Facts and Procedures in The Extractive Industries. Greece.
  • Aguiar, A.O, Andrade, L.H., Ricci, B.C., Pires W.L., Miranda, G.A, Amaral, M.C.S., 2016. Gold acid mine drainage treatment by membrane separation processes: an evaluation of the main operational conditions. Separation and Purification Technology, 170:360–369.
  • Ahn, K.H., Song, K.G., Cha, H.Y., Yeom, I.T., 1999. Removal of Ions in Nickel Electroplating Rinse Water Using Low-Pressure Nanofiltration. Desalination, 122:77-84.
  • Akcil, A., Koldas, S., 2006. Acid Mine Drainage (AMD) Causes, Treatment and Case Studies. Journal of Cleaner Production, 14, 1139-1145.
  • Alvarenga, J., Ainge Y., Williams, C., Maltz, A., Blough, T., Khan, M., Aizenberg, J., 2018. Research Update: Liquid Gated Membrane Filtration Performance With Inorganic Particle Suspensions Featured. APL Materials, 6, 100703, https://doi.org/10.1063/1.5047480.
  • Al-Zoubi, H., Rieger, A., Steinberger, P., Pelz, W., Haseneder, R., Hartel, G., 2010. Nanofiltration of Acid Mine Drainage. Desalination and Water Treatment, 21, 148–161.
  • Arı, P. H., 2009. Türkiye’de İçme Suyu Amaçlı Büyük Kapasiteli Membran Sistemlerinin Maliyet Analizi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi.
  • Baena-Moreno, F.M., Rodríguez-Galán, M., Vega, F., Vilches, L.F., Navarrete, B., Zhang, Z., 2019a. Biogas upgrading by cryogenic techniques. Environmental Chemistry Letters, 17, 1251–1261.
  • Barakat, M. A., 2011. New Trends in Removing Heavy Metals From Industrial Wastewater. Arabian Journal of Chemistry, 4(4), 361-377.
  • Bayer, H., 2004. Water Treatment at Kennecott Utah Copper, Proceedings of the 2004 Ontario MEND Workshop, Sudbury, Ontario.
  • Benito, Y., Ruiz, M.L., 2001. Reverse Osmosis Applied to Metal Finishing Wastewater. Desalination, 142:229-234.
  • Binnemans, K., Pontikes, Y., Jones, P.T., Van Gerven, T., Blanpain, B., 2013. Recovery of Rare Earths From Industrial Waste Residues: A Concise Review. In Proceedings of the 3rd International Slag Valorisation Symposium: The Transition to Sustainable Materials Management (pp. 191-205).
  • Botz, M., Guzman, G., Sevilla, L., 2015. Campaign Testing The Yanacocha SART Plant With High-Copper Feed Solution. SME Annual Meeting, Society for Mining, Metallurgy&Exploration, Denver, CO.
  • Breuer, P., 2015. Dealing with Copper in Gold Ores; Implemented and Future Approaches. ALTA 2015, Gold-Precious Metals Proceedings, 2-20.
  • Cameron, R., Edwards, C., 2012. Membrane Technology Applications In Mineral Processing. In Proceedings of the 44th Annual Canadian Mineral Processors Operators Conference, Ottawa, Ontario, Canada.
  • Carvalho, A.L., Maugeri, F., Pradanos, P., Silva, V., Hernandez, A., 2011. Separation of Potassium Clavulanate and Potassium Chloride by Nanofiltration: Transport and Evaluation of Membranes. Separation and Purification Technology, 83, 23–30.
  • Chai, X., Chen, G., Yue, P.L., Mi, Y., 1997. Pilot Scale Membrane Separation of Electroplating Wastewater by Reverse Osmosis. Journal of Membrane Science, 123:235-242.
  • Chen, J.P., Hong, L., Wu, S.N., Wang, L., 2002. Elucidation of Interactions between Metal Ions and Ca-Alginate Based Ion Exchange Resin by Spectroscopic Analysis and Modeling Simulation. Langmuir, 18:9413-9421.
  • Chesters, S.P., Morton, P., Fazel M., 2016. Membranes and Minewater–Waste or Revenue Stream. Proceedings Mining Meets Water (IMWA)–Conflicts and Solutions, Freiberg/Germany.
  • Cho, Y.H., Lee, H.D., Park, H.B., 2012. Integrated membrane processes for separation and purification of organic acid from a biomass fermentation process. Ind Eng Chem Res 51:10207–10219.
  • Choi, Y., Ryu, S., Naidu, G., Lee, S., Vigneswaran, S., 2019. Integrated submerged membrane distillation-adsorption system for rubidium recovery. Separation and Purification Technology 218, 146–155.
  • Dai, X., Simons, A., Breuer, P., 2012. A Review of Copper Cyanide Recovery Technologies for The Cyanidation Of Copper Containing Gold Ores. Minerals Engineering, 25, 1-13.
  • Eliceche, A.M., Corvalan, S.M., Ortiz, I., 2002. Continuous Operation of Membrane Processes for the Treatment of Industrial Effluents. Computers and Chemical Engineering, 26:555-561.
  • EPA, 1983. Neutralization of Acid Mine Drainage. Cincinnati, USA.
  • EPA-United States Environmental Protection Agency, 1994b. Acid Mine Drainage Prediction. USEPA, Office of Solid Waste, Special Wastes Branch, EPA 530-R-94-036.
  • Eryıldız, B., 2019. Su/Atıksulardan Bor Giderimi. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, İstanbul Teknik Üniversitesi, İstanbul.
  • EU, 2006. Directive 2006/21/EC of the European Parliament and of the Council of 15 March 2006 on the Management of Waste from Extractive Industries and Amending Directive 2004/35/EC (Mining Waste Directive).
  • Franus, W., Wiatros-Motyka, M.M., Wdowin, M., 2015. Coal Fly Ash As A Resource For Rare Earth Elements. Environmental Science and Pollution Research, 22(12), 9464-9474.
  • Fu, F., Wang, Q., 2011. Removal Of Heavy Metal Ions From Wastewaters: A Review. Journal Of Environmental Management, 92(3), 407-418.
  • Harato, T., Smith, P., Oraby, E., 2012. Recovery of Soda from Bauxite Residue by Acid Leaching and Electrochemical Processing. Proceedings of the 9th International Alumina Quality Workshop, Perth, pp. 193–201.
  • Harrison Western Process Technologies, 1997. Membrane Plant for Preconcentration of PLS, Arizona Conference of AIME, Hydrometallurgical Division, Cananea, Sonora, Mexico.
  • Hedjazi F., Monhemius A.J., 2018. The Industrial Application of Ultrafiltation and Reverse Osmosis for the Recovery of Copper, Silver and Cyanide from Gold Leach Liquors. Extraction 2018, Volume: Proceedings, pp.1883-1891. Ottawa, Canada.
  • http://www.marketsandmarkets.com/Market-Reports/membranes-market-1176.html. Erişim Tarihi: 02.02.2021.
  • https://www.globalwaterintel.com/ Erişim Tarihi: 02.02.2021.
  • Irving, M., 2018. New Desalination Membrane Produces Both Drinking Water and Lithium. https://newatlas.com/metal-organic-framework-filter-water-lithium/53356/ Erişim Tarihi: 02.02.2021.
  • Karadeniz, M., 2008. Asit Maden Drenajı ve Çözümü. TMMOB Maden Mühendisleri Odası Yayını, Oda Yayın No: 146, 231.
  • Kesiemea, U. K., Aral, H., 2015. Application Of Membrane Distillation And Solvent Extraction For Water And Acid Recovery From Acidic Mining Waste And Process Solutions. Journal of Environmental Chemical Engineering, 3, 2050–2056.
  • Koyuncu, İ., Benli, B., 2018. Sepiyolit İnorganik Nanofiberlerle Hazırlanan Polisülfon Kompozit Membran Üretim Yöntemi ve Bu Yöntemle Elde Edilen Nanokil ve Kompozit Membran, Patent No: 2018/11210.
  • Lien, L.A., 2002. Membrane Technologies for Mining and Refinery Processing Improvements. Recycling and Waste Treatment in Mineral and Metal Processing: Technical and Economic Aspects. Editor Bo Bjorkman, Caisa Samuelsson, Lulea University.
  • Lien, L.A., 2008. HW Process Technologies’ Engineered Membrane Separation (EMS) Systems for Hydrometallurgical Applications, in Proceedings of the Sixth International Symposium Hydrometallurgy 2008, pp 257-261 Society for Mining, Metallurgy and Exploration: Colorado.
  • Lien, L.A., 2009. Engineered Membrane Systems (EMS®) for ARD&other Hydrometallurgical Applications, INAP Water Treatment Workshop October 2009.
  • López, J., Reig, M., Gibert, O., Cortina, J.L., 2019. Recovery of sulphuric acid and added value metals (Zn, Cu and rare earths) from acidic mine waters using nanofiltration membranes. Separation Purification Technology, 212:180–190.
  • Melnyk, L., Goncharuk, V., Butnyk, I., Tsapiuk, E., 2005. Boron Removal From Natural and Wastewaters Using Combined Sorption/Membrane Process. Desalination, 185, 147-157.
  • Mills, C., 1995. An AMD/ARD Dedicated Blog Based on The Text of A Presentation Given Mills to British Columbia High School Science Teachers. Seminar: Acid Rock Drainage at the Cordilleran Roundup, Vancouver.
  • Mortazavi, S. 2008. Application of Membrane Separation Technology to Mitigation of Mine Effluente and Acidic Drainage, Mine Environment Neutral Drainage (MEND) Report 3.15.1. Avalible online: http://mend-nedem.org/wp-content/ uploads/2013/01/3.15.1.pdf.
  • Mulder, M., 1996. Basic Principle of Membrane Technology, 2nd edition, Kluver Academic Publishers, ABD.
  • Murthy, Z.V.P., Gupta, S.K., 1999. Sodium Cyanide Separation and Parameter Estimation for Reverse Osmosis Thin Film Composite Polyamide Membrane. Journal of Membrane Science, 154, 89-103.
  • Özgür, C., Şan, O., 2008. Slip Cast Forming of Multilayer Ceramic Filter by Fine Particles Migration. Ceramics International, 34, 1935–1939.
  • Petrov, S., Nenov, V., 2003. Removal and Recovery of Copper from Wastewater by A Complexation-Ultrafiltration Process. Desalination, 162, 201-209.
  • Protano, G., Riccobono, F., 2002. High contents of rare earth elements (REEs) in Stream Waters of a Cu–Pb–Zn Mining Area. Environmental Pollution, 117(3), 499-514.
  • Resmi Gazete, 2015. Maden Atıkları Yönetmeliği. Çevre ve Şehircilik Bakanlığı, 15 Temmuz 2015, Sayı: 29417.
  • Rodriguez, P.M., Samper, E., Varo, G.P., Prats, R.D., 2002. Analysis of the Variation in the Permeate Flux and of the Efficiency of the Recovery of Mercury by Polyelectrolyte Enhanced Ultrafiltration (PE-UF). Desalination, 151:247-251.
  • Rodríguez‑Galán, M., Baena‑Moreno, F.M., Vázquez, S., Arroyo‑Torralvo, F., Vilches, L.F., Zhang, Z., 2019. Remediation of acid mine drainage. Environmental Chemistry Letters, 17:1529–1538.
  • Sceresini, B., Breuer, P., 2016. Gold-Copper Ores, Gold Ore Processing. 2nd Edition, Chapter 43, Ed: M. D. Adams, Elsevier.
  • Skousen, J.G., Sextone A., Ziemkiewicz, P.F., 2000. Acid Mine Drainage Control And Treatment. In: Barnhisel, R. I., Darmody, R.G., Daniels, L. Agronomy Monograph Number 41. Madison WI, American Society of Agronomy.
  • Smith, P., Harato, T., 2012. Recovery of soda from bauxite residue. Patent Application WO 2012/145797 A1.
  • Soldenhoff, K., McCulloch, J., Manis, A., Macintosh, P., 2005. Nanofiltration in Metal and Acid Recovery. In Nanofiltration-Principles and Application. Elsevier Advanced Technology: Oxford, UK, Chapter 19, pp. 459–477.
  • Sugita, N., 1989. Process and Apparatus for Recovery of Precious Metal Compound, US Patent, 4880511.
  • Taggart, R.K., Hower, J.C., Dwyer, G.S., Hsu-Kim, H., 2016. Trends in the Rare Earth Element Content Of US-Based Coal Combustion Fly Ashes. Environmental Science&Technology, 50(11), 5919-5926.
  • Tangüler, M., 2015. Characterization of Fly Ashes From Thermal Power Plants in Turkey, Yüksek Lisans Tezi, Orta Doğu Teknik Üniversitesi.
  • Trumm D., 2010. Selection of Active And Passive Treatment Systems For AMD–Flow Charts For New Zealand Conditions. New Zealand Journal Of Geology and Geophysics, 53(2–3):195–210.
  • TÜİK, 2019. Maden İşletmeleri Su, Atıksu ve Atık İstatistikleri, 2018, Sayı: 30670, 19 Aralık 2019.
  • Ulusal Membran Teknolojileri ve UYG-AR Merkezi Bülteni, Ekim 2019, Yıl: 4, Sayı: 7. www.memtek.org. Erişim Tarihi: 02.02.2021.
  • Ulusal Membran Teknolojileri ve UYG-AR Merkezi Bülteni, Haziran 2018, Yıl: 3, Sayı: 5. www.memtek.org. Erişim Tarihi: 02.02.2021.
  • Verplanck, P.L., Nordstrom, D.K., Taylor, H.E., Kimball, B.A., 2004. Rare Earth Element Partitioning Between Hydrous Ferric Oxides And Acid Mine Water During Iron Oxidation. Applied Geochemistry, 19(8), 1339-1354.
  • Wadekar, S.S., Vidic, R.D., 2018. Comparison of ceramic and polymeric nanofiltration membranes for treatment of abandoned coal mine drainage. Desalination, 440:135–145.
  • Williams, A., 2016. 3D Printed Water Technology: Entering the Mainstream. https://www.waterworld.com/articles/wwi/print/volume-31/issue-4/technology-case-studies/3d-printed-water-technology-entering-the-mainstream. Erişim Tarihi:02.02.2021.
  • Yücel, Ş.D., 2013. Asidik Su Kaynaklarının Karakteristikleri, Oluşumunu Sağlayan Faktörler ve Hidrojeokimyasal Özellikleri (Çan-Bayramiç Örneği), Doktora Tezi, Fen Bilimleri Enstitüsü, Çanakkale Onsekiz Mart Üniversitesi, Çanakkale.
  • Zhang, Z., Yan, Y., Zhang, L., Zhang, L., Chen, Y., Ju, S., 2014. CFD investigation of CO2 capture by methyldiethanolamine and 2-(1-piperazinyl)-ethylamine in membranes: part B. Effect of membrane properties. Journal of Natural Gas Science and Engineering, 19:311–316.

MEMBRANE TECHNOLOGIES and APPLICATIONS in MINING PROCESSES

Year 2021, , 227 - 237, 21.12.2021
https://doi.org/10.30797/madencilik.885042

Abstract

In mining, membranes are used in different areas such as treatment of mining wastewater, precious metal recovery from wastewater, concentration of loaded leach solutions and recovery of precious metals, Acid Mine Drainage (AMD) treatment, acid, caustic and cyanide recovery. In mining, membranes are preferred because of their low cost, easy operation, environmentally friendly, selective, high removal efficiency and take up less space. In this study, the membrane applications used by the mining industry in the world and in our country have been evaluated in the light of the latest developments in membrane technology. Accordingly, the critical properties of membranes have been improved with the production of recently developed innovative membrane processes. Membrane costs and operating pressures have decreased significantly, and the problem of clogging and contamination has become controllable. Thus, its use for different purposes in the mining industry on a global scale has become widespread and an ideal method. In our country, along with ongoing studies, it is evaluated that this technology has recently become widespread in mining.

References

  • Agioutantis, Z., 2001. Book of Proceedings of İnternational Workshop on New Frontiers in Reclamation: Facts and Procedures in The Extractive Industries. Greece.
  • Aguiar, A.O, Andrade, L.H., Ricci, B.C., Pires W.L., Miranda, G.A, Amaral, M.C.S., 2016. Gold acid mine drainage treatment by membrane separation processes: an evaluation of the main operational conditions. Separation and Purification Technology, 170:360–369.
  • Ahn, K.H., Song, K.G., Cha, H.Y., Yeom, I.T., 1999. Removal of Ions in Nickel Electroplating Rinse Water Using Low-Pressure Nanofiltration. Desalination, 122:77-84.
  • Akcil, A., Koldas, S., 2006. Acid Mine Drainage (AMD) Causes, Treatment and Case Studies. Journal of Cleaner Production, 14, 1139-1145.
  • Alvarenga, J., Ainge Y., Williams, C., Maltz, A., Blough, T., Khan, M., Aizenberg, J., 2018. Research Update: Liquid Gated Membrane Filtration Performance With Inorganic Particle Suspensions Featured. APL Materials, 6, 100703, https://doi.org/10.1063/1.5047480.
  • Al-Zoubi, H., Rieger, A., Steinberger, P., Pelz, W., Haseneder, R., Hartel, G., 2010. Nanofiltration of Acid Mine Drainage. Desalination and Water Treatment, 21, 148–161.
  • Arı, P. H., 2009. Türkiye’de İçme Suyu Amaçlı Büyük Kapasiteli Membran Sistemlerinin Maliyet Analizi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi.
  • Baena-Moreno, F.M., Rodríguez-Galán, M., Vega, F., Vilches, L.F., Navarrete, B., Zhang, Z., 2019a. Biogas upgrading by cryogenic techniques. Environmental Chemistry Letters, 17, 1251–1261.
  • Barakat, M. A., 2011. New Trends in Removing Heavy Metals From Industrial Wastewater. Arabian Journal of Chemistry, 4(4), 361-377.
  • Bayer, H., 2004. Water Treatment at Kennecott Utah Copper, Proceedings of the 2004 Ontario MEND Workshop, Sudbury, Ontario.
  • Benito, Y., Ruiz, M.L., 2001. Reverse Osmosis Applied to Metal Finishing Wastewater. Desalination, 142:229-234.
  • Binnemans, K., Pontikes, Y., Jones, P.T., Van Gerven, T., Blanpain, B., 2013. Recovery of Rare Earths From Industrial Waste Residues: A Concise Review. In Proceedings of the 3rd International Slag Valorisation Symposium: The Transition to Sustainable Materials Management (pp. 191-205).
  • Botz, M., Guzman, G., Sevilla, L., 2015. Campaign Testing The Yanacocha SART Plant With High-Copper Feed Solution. SME Annual Meeting, Society for Mining, Metallurgy&Exploration, Denver, CO.
  • Breuer, P., 2015. Dealing with Copper in Gold Ores; Implemented and Future Approaches. ALTA 2015, Gold-Precious Metals Proceedings, 2-20.
  • Cameron, R., Edwards, C., 2012. Membrane Technology Applications In Mineral Processing. In Proceedings of the 44th Annual Canadian Mineral Processors Operators Conference, Ottawa, Ontario, Canada.
  • Carvalho, A.L., Maugeri, F., Pradanos, P., Silva, V., Hernandez, A., 2011. Separation of Potassium Clavulanate and Potassium Chloride by Nanofiltration: Transport and Evaluation of Membranes. Separation and Purification Technology, 83, 23–30.
  • Chai, X., Chen, G., Yue, P.L., Mi, Y., 1997. Pilot Scale Membrane Separation of Electroplating Wastewater by Reverse Osmosis. Journal of Membrane Science, 123:235-242.
  • Chen, J.P., Hong, L., Wu, S.N., Wang, L., 2002. Elucidation of Interactions between Metal Ions and Ca-Alginate Based Ion Exchange Resin by Spectroscopic Analysis and Modeling Simulation. Langmuir, 18:9413-9421.
  • Chesters, S.P., Morton, P., Fazel M., 2016. Membranes and Minewater–Waste or Revenue Stream. Proceedings Mining Meets Water (IMWA)–Conflicts and Solutions, Freiberg/Germany.
  • Cho, Y.H., Lee, H.D., Park, H.B., 2012. Integrated membrane processes for separation and purification of organic acid from a biomass fermentation process. Ind Eng Chem Res 51:10207–10219.
  • Choi, Y., Ryu, S., Naidu, G., Lee, S., Vigneswaran, S., 2019. Integrated submerged membrane distillation-adsorption system for rubidium recovery. Separation and Purification Technology 218, 146–155.
  • Dai, X., Simons, A., Breuer, P., 2012. A Review of Copper Cyanide Recovery Technologies for The Cyanidation Of Copper Containing Gold Ores. Minerals Engineering, 25, 1-13.
  • Eliceche, A.M., Corvalan, S.M., Ortiz, I., 2002. Continuous Operation of Membrane Processes for the Treatment of Industrial Effluents. Computers and Chemical Engineering, 26:555-561.
  • EPA, 1983. Neutralization of Acid Mine Drainage. Cincinnati, USA.
  • EPA-United States Environmental Protection Agency, 1994b. Acid Mine Drainage Prediction. USEPA, Office of Solid Waste, Special Wastes Branch, EPA 530-R-94-036.
  • Eryıldız, B., 2019. Su/Atıksulardan Bor Giderimi. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, İstanbul Teknik Üniversitesi, İstanbul.
  • EU, 2006. Directive 2006/21/EC of the European Parliament and of the Council of 15 March 2006 on the Management of Waste from Extractive Industries and Amending Directive 2004/35/EC (Mining Waste Directive).
  • Franus, W., Wiatros-Motyka, M.M., Wdowin, M., 2015. Coal Fly Ash As A Resource For Rare Earth Elements. Environmental Science and Pollution Research, 22(12), 9464-9474.
  • Fu, F., Wang, Q., 2011. Removal Of Heavy Metal Ions From Wastewaters: A Review. Journal Of Environmental Management, 92(3), 407-418.
  • Harato, T., Smith, P., Oraby, E., 2012. Recovery of Soda from Bauxite Residue by Acid Leaching and Electrochemical Processing. Proceedings of the 9th International Alumina Quality Workshop, Perth, pp. 193–201.
  • Harrison Western Process Technologies, 1997. Membrane Plant for Preconcentration of PLS, Arizona Conference of AIME, Hydrometallurgical Division, Cananea, Sonora, Mexico.
  • Hedjazi F., Monhemius A.J., 2018. The Industrial Application of Ultrafiltation and Reverse Osmosis for the Recovery of Copper, Silver and Cyanide from Gold Leach Liquors. Extraction 2018, Volume: Proceedings, pp.1883-1891. Ottawa, Canada.
  • http://www.marketsandmarkets.com/Market-Reports/membranes-market-1176.html. Erişim Tarihi: 02.02.2021.
  • https://www.globalwaterintel.com/ Erişim Tarihi: 02.02.2021.
  • Irving, M., 2018. New Desalination Membrane Produces Both Drinking Water and Lithium. https://newatlas.com/metal-organic-framework-filter-water-lithium/53356/ Erişim Tarihi: 02.02.2021.
  • Karadeniz, M., 2008. Asit Maden Drenajı ve Çözümü. TMMOB Maden Mühendisleri Odası Yayını, Oda Yayın No: 146, 231.
  • Kesiemea, U. K., Aral, H., 2015. Application Of Membrane Distillation And Solvent Extraction For Water And Acid Recovery From Acidic Mining Waste And Process Solutions. Journal of Environmental Chemical Engineering, 3, 2050–2056.
  • Koyuncu, İ., Benli, B., 2018. Sepiyolit İnorganik Nanofiberlerle Hazırlanan Polisülfon Kompozit Membran Üretim Yöntemi ve Bu Yöntemle Elde Edilen Nanokil ve Kompozit Membran, Patent No: 2018/11210.
  • Lien, L.A., 2002. Membrane Technologies for Mining and Refinery Processing Improvements. Recycling and Waste Treatment in Mineral and Metal Processing: Technical and Economic Aspects. Editor Bo Bjorkman, Caisa Samuelsson, Lulea University.
  • Lien, L.A., 2008. HW Process Technologies’ Engineered Membrane Separation (EMS) Systems for Hydrometallurgical Applications, in Proceedings of the Sixth International Symposium Hydrometallurgy 2008, pp 257-261 Society for Mining, Metallurgy and Exploration: Colorado.
  • Lien, L.A., 2009. Engineered Membrane Systems (EMS®) for ARD&other Hydrometallurgical Applications, INAP Water Treatment Workshop October 2009.
  • López, J., Reig, M., Gibert, O., Cortina, J.L., 2019. Recovery of sulphuric acid and added value metals (Zn, Cu and rare earths) from acidic mine waters using nanofiltration membranes. Separation Purification Technology, 212:180–190.
  • Melnyk, L., Goncharuk, V., Butnyk, I., Tsapiuk, E., 2005. Boron Removal From Natural and Wastewaters Using Combined Sorption/Membrane Process. Desalination, 185, 147-157.
  • Mills, C., 1995. An AMD/ARD Dedicated Blog Based on The Text of A Presentation Given Mills to British Columbia High School Science Teachers. Seminar: Acid Rock Drainage at the Cordilleran Roundup, Vancouver.
  • Mortazavi, S. 2008. Application of Membrane Separation Technology to Mitigation of Mine Effluente and Acidic Drainage, Mine Environment Neutral Drainage (MEND) Report 3.15.1. Avalible online: http://mend-nedem.org/wp-content/ uploads/2013/01/3.15.1.pdf.
  • Mulder, M., 1996. Basic Principle of Membrane Technology, 2nd edition, Kluver Academic Publishers, ABD.
  • Murthy, Z.V.P., Gupta, S.K., 1999. Sodium Cyanide Separation and Parameter Estimation for Reverse Osmosis Thin Film Composite Polyamide Membrane. Journal of Membrane Science, 154, 89-103.
  • Özgür, C., Şan, O., 2008. Slip Cast Forming of Multilayer Ceramic Filter by Fine Particles Migration. Ceramics International, 34, 1935–1939.
  • Petrov, S., Nenov, V., 2003. Removal and Recovery of Copper from Wastewater by A Complexation-Ultrafiltration Process. Desalination, 162, 201-209.
  • Protano, G., Riccobono, F., 2002. High contents of rare earth elements (REEs) in Stream Waters of a Cu–Pb–Zn Mining Area. Environmental Pollution, 117(3), 499-514.
  • Resmi Gazete, 2015. Maden Atıkları Yönetmeliği. Çevre ve Şehircilik Bakanlığı, 15 Temmuz 2015, Sayı: 29417.
  • Rodriguez, P.M., Samper, E., Varo, G.P., Prats, R.D., 2002. Analysis of the Variation in the Permeate Flux and of the Efficiency of the Recovery of Mercury by Polyelectrolyte Enhanced Ultrafiltration (PE-UF). Desalination, 151:247-251.
  • Rodríguez‑Galán, M., Baena‑Moreno, F.M., Vázquez, S., Arroyo‑Torralvo, F., Vilches, L.F., Zhang, Z., 2019. Remediation of acid mine drainage. Environmental Chemistry Letters, 17:1529–1538.
  • Sceresini, B., Breuer, P., 2016. Gold-Copper Ores, Gold Ore Processing. 2nd Edition, Chapter 43, Ed: M. D. Adams, Elsevier.
  • Skousen, J.G., Sextone A., Ziemkiewicz, P.F., 2000. Acid Mine Drainage Control And Treatment. In: Barnhisel, R. I., Darmody, R.G., Daniels, L. Agronomy Monograph Number 41. Madison WI, American Society of Agronomy.
  • Smith, P., Harato, T., 2012. Recovery of soda from bauxite residue. Patent Application WO 2012/145797 A1.
  • Soldenhoff, K., McCulloch, J., Manis, A., Macintosh, P., 2005. Nanofiltration in Metal and Acid Recovery. In Nanofiltration-Principles and Application. Elsevier Advanced Technology: Oxford, UK, Chapter 19, pp. 459–477.
  • Sugita, N., 1989. Process and Apparatus for Recovery of Precious Metal Compound, US Patent, 4880511.
  • Taggart, R.K., Hower, J.C., Dwyer, G.S., Hsu-Kim, H., 2016. Trends in the Rare Earth Element Content Of US-Based Coal Combustion Fly Ashes. Environmental Science&Technology, 50(11), 5919-5926.
  • Tangüler, M., 2015. Characterization of Fly Ashes From Thermal Power Plants in Turkey, Yüksek Lisans Tezi, Orta Doğu Teknik Üniversitesi.
  • Trumm D., 2010. Selection of Active And Passive Treatment Systems For AMD–Flow Charts For New Zealand Conditions. New Zealand Journal Of Geology and Geophysics, 53(2–3):195–210.
  • TÜİK, 2019. Maden İşletmeleri Su, Atıksu ve Atık İstatistikleri, 2018, Sayı: 30670, 19 Aralık 2019.
  • Ulusal Membran Teknolojileri ve UYG-AR Merkezi Bülteni, Ekim 2019, Yıl: 4, Sayı: 7. www.memtek.org. Erişim Tarihi: 02.02.2021.
  • Ulusal Membran Teknolojileri ve UYG-AR Merkezi Bülteni, Haziran 2018, Yıl: 3, Sayı: 5. www.memtek.org. Erişim Tarihi: 02.02.2021.
  • Verplanck, P.L., Nordstrom, D.K., Taylor, H.E., Kimball, B.A., 2004. Rare Earth Element Partitioning Between Hydrous Ferric Oxides And Acid Mine Water During Iron Oxidation. Applied Geochemistry, 19(8), 1339-1354.
  • Wadekar, S.S., Vidic, R.D., 2018. Comparison of ceramic and polymeric nanofiltration membranes for treatment of abandoned coal mine drainage. Desalination, 440:135–145.
  • Williams, A., 2016. 3D Printed Water Technology: Entering the Mainstream. https://www.waterworld.com/articles/wwi/print/volume-31/issue-4/technology-case-studies/3d-printed-water-technology-entering-the-mainstream. Erişim Tarihi:02.02.2021.
  • Yücel, Ş.D., 2013. Asidik Su Kaynaklarının Karakteristikleri, Oluşumunu Sağlayan Faktörler ve Hidrojeokimyasal Özellikleri (Çan-Bayramiç Örneği), Doktora Tezi, Fen Bilimleri Enstitüsü, Çanakkale Onsekiz Mart Üniversitesi, Çanakkale.
  • Zhang, Z., Yan, Y., Zhang, L., Zhang, L., Chen, Y., Ju, S., 2014. CFD investigation of CO2 capture by methyldiethanolamine and 2-(1-piperazinyl)-ethylamine in membranes: part B. Effect of membrane properties. Journal of Natural Gas Science and Engineering, 19:311–316.
There are 69 citations in total.

Details

Primary Language Turkish
Journal Section Tarama Makalesi
Authors

Turan Uysal 0000-0003-1643-6725

Publication Date December 21, 2021
Submission Date February 22, 2021
Published in Issue Year 2021

Cite

APA Uysal, T. (2021). MADENCİLİK SÜREÇLERİNDE MEMBRAN TEKNOLOJİLERİ VE UYGULAMALARI. Bilimsel Madencilik Dergisi, 60(4), 227-237. https://doi.org/10.30797/madencilik.885042
AMA Uysal T. MADENCİLİK SÜREÇLERİNDE MEMBRAN TEKNOLOJİLERİ VE UYGULAMALARI. Madencilik. December 2021;60(4):227-237. doi:10.30797/madencilik.885042
Chicago Uysal, Turan. “MADENCİLİK SÜREÇLERİNDE MEMBRAN TEKNOLOJİLERİ VE UYGULAMALARI”. Bilimsel Madencilik Dergisi 60, no. 4 (December 2021): 227-37. https://doi.org/10.30797/madencilik.885042.
EndNote Uysal T (December 1, 2021) MADENCİLİK SÜREÇLERİNDE MEMBRAN TEKNOLOJİLERİ VE UYGULAMALARI. Bilimsel Madencilik Dergisi 60 4 227–237.
IEEE T. Uysal, “MADENCİLİK SÜREÇLERİNDE MEMBRAN TEKNOLOJİLERİ VE UYGULAMALARI”, Madencilik, vol. 60, no. 4, pp. 227–237, 2021, doi: 10.30797/madencilik.885042.
ISNAD Uysal, Turan. “MADENCİLİK SÜREÇLERİNDE MEMBRAN TEKNOLOJİLERİ VE UYGULAMALARI”. Bilimsel Madencilik Dergisi 60/4 (December 2021), 227-237. https://doi.org/10.30797/madencilik.885042.
JAMA Uysal T. MADENCİLİK SÜREÇLERİNDE MEMBRAN TEKNOLOJİLERİ VE UYGULAMALARI. Madencilik. 2021;60:227–237.
MLA Uysal, Turan. “MADENCİLİK SÜREÇLERİNDE MEMBRAN TEKNOLOJİLERİ VE UYGULAMALARI”. Bilimsel Madencilik Dergisi, vol. 60, no. 4, 2021, pp. 227-3, doi:10.30797/madencilik.885042.
Vancouver Uysal T. MADENCİLİK SÜREÇLERİNDE MEMBRAN TEKNOLOJİLERİ VE UYGULAMALARI. Madencilik. 2021;60(4):227-3.

22562 22561 22560 22590 22558