Research Article
BibTex RIS Cite

S20 KIRILGANLIK İNDEKSİNİN KAYAÇLARIN PARÇALANABİLİRLİĞİ AÇISINDAN İNCELENMESİ

Year 2018, Volume: 57, 73 - 83, 15.12.2018
https://doi.org/10.30797/madencilik.493200

Abstract

Kayaçların kırılganlığının belirlenmesi, farklı madencilik uygulamalarında önemli bir ön tasarım
aracı olarak kabul edilmektedir. Kayaçların dayanım - kırılganlık ilişkisi, kayaçların delinebilirliği,
kazılabilirliği ve parçalanabilirliği açısından oldukça önemlidir. Bu çalışmada kayaçların kırılganlık
derecesinin belirlenmesinde çoğunlukla kullanılan S20 kırılganlık indeks deneyi, kayaçların
parçalanabilirliği açısından incelenmiştir. Önceki çalışmalarda kullanılan kırılganlık indeksleri
özetlenmiş ve bu yaklaşımların S20 kırılganlık indeksi ile olan ilişkisi araştırılmıştır. On iki farklı
kaya türünde gerçekleştirilen laboratuvar çalışmaları sonucunda, B3 kırılganlık indeksi ve saha
çalışmalarında pratik ve tekrarlanabilirliği yüksek bir deney olan agrega darbe değeri testi (AIV) ile
S20 arasında anlamlı ilişkiler belirlenmiştir. Sonuç olarak kaya malzemesinin parçalanabilirliğinin
niceliksel olarak tanımlanmasını amaçlayan bir sınıflama sistemi önerilmiştir. Önerilen sınıflama
sisteminin kırma – eleme tesislerine uygun çeneli kırıcı seçiminde, agregaların aşınma ve
parçalanma özelliklerinin ve iyi kalite kaya kütlelerinde gerçekleştirilen delme ve patlatma
uygulamalarında özgül şarjın kestiriminde kullanılabilir.

References

  • Altindag R 2002. The Evaluation of Rock Brittleness Concept on Rotary Blasthole Drills. J. South Afr. Inst. Min. Metall. 102 61–66.
  • Bruland, A. 1998. Drillability Test Methods. NTNU Trondheim. BS 812-112 1990. British Standard: Testing Aggregates; Method for Determination of Aggregate Impact Value (AIV) 14pp.
  • Cai, M., Kaiser, P.K., Tasaka Y., Maejima T., Morioka H., Minami M. 2004. Generalized Crack Initiation and Crack Damage Stress Thresholds of Brittle Rock Masses near Underground Excavations. Int. J. Rock Mech. Min. Sci. 41 833–847.
  • Copur H., Bilgin N., Tuncdemir H., Balci C. 2003. A Set of Indices Based on Indentation Test for Assessment of Rock Cutting Performance and Rock Properties. J. South A. Inst. Min. Met. 103 (9) 589–600
  • Dahl, F. 2003. The Sugessted DRI, BWI, CLI Standards. NTNU, Angleggsdrift, Trondheim, Norway.
  • Dahl, F., Bruland A., Jakobsen P.D., Nilsen B., Grøv E., (2012) Classifications of Properties Influencing the Drillability of Rocks Based on the NTNU/SINTEF Test Method. Tunn. Undergr. Sp. Tech. 28 150–158.
  • Deere D.U., Miller R.P. 1966. Engineering Classification and Index Properties for İntact Rocks. Tech. Report. Air Force Weapons Lab., New Mexico, No. AFNL-TR, 65–116.
  • Duthoit, V. 2000. Crushing and Grinding. Aggregates, Ch. 9, (Ed. Louis Primel and Claude Tourenq). Balkema, Rotterdam.
  • Goktan, M. 1991. Brittleness and Micro-scale Rock Cutting Efficiency. Min. Sci.Tech., 13 237–241.
  • Gunaydin O., Kahraman S., Fener M. 2004. Sawability Prediction of Carbonate Rocks from Brittleness Indexes. J. South Afr. Inst. Min., 104(4) 239–243.
  • Guo Z., Chapman M., Li X. (2012). A Shale Rock Physics Model and İits Application in the Prediction of Brittleness İndex, Mineralogy, and Porosity of the Barnett Shale. SEG Annual Meeting, Soc. Expl. Geophy., 1–5 Las Vegas, Nevada
  • Hosseini R., Lashkaripour G.R., Moghadas N.H., Ghafoori M. 2015. Estimation of S20-Brittleness (As An İnput Parameter in Drilling Rate Index, DRI) Using Other Types of Brittleness. 11th Iranian and 2nd Regional Tunnel Conf. Tehran - Iran.
  • Howarth, D.F., Rowlands, J.C. 1987. Quantitative Assessment of Rock Texture and Correlation with Drillability and Strength Properties. Rock Mech. Rock Eng. 20 (1) 57–85.
  • Hucka V., Das B. 1974. Brittleness Determination of Rocks by Different Methods. Int. J. Rock Mech. Min. Sci. & Geo Abst., 11(10) 389–392.
  • ISRM 2007. The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974–2006. In: Ulusay R, Hudson JA (eds) Suggested methods prepared by the commission on testing methods. International Society for Rock Mechanics (ISRM), Ankara, Turkey.
  • Kahraman, S. 2002. Correlation of TBM and Drilling Machine Performance with Rock Brittleness. Eng. Geol., 65 269–283.
  • Kahraman S., Toraman O.Y. 2008. Predicting Los Angeles Abrasion Loss of Rock Aggregates from Crushability Index. Bull. Mat. Sci. 31(2) 173–177.
  • Meng F., Zhou H., Zhang C., Xu R., Lu J. 2015. Evaluation Methodology of Brittleness of Rock Based on Post-peak Stress–strain Curves. Rock Mech. Rock Eng. 48 1787–1805.
  • Nejati H.R., Ghazvinian A. 2014. Brittleness Effect on Rock Fatigue Damage Evolution. Rock Mech. Rock Eng. 47(5):1839–1848
  • Nejati H.R., Moosavi S.A. 2017. A New Brittleness Index for Estimation of Rock Fracture Toughness. Min & Environ. 8(1) 83–91.
  • Ozcelik Y. 2011. Predicting Los Angeles Abrasion of Rocks from Some Physical and Mechanical Properties. Sci. Res. Ess. 6(7) 1612–1619
  • Ozfirat M.K. Yenice H. Simsir F., Yarali O. 2016. A New Approach to Rock Brittleness and Its usability at Prediction of Drillability. J. A. Earth Sci. 119 94–101.
  • Pang, S. S., Goldsmith, W. 1990. Investigation of Crack Formation during Loading of the Brittle Rock. Rock Mech. Rock Eng. 23 53–63.
  • Protodyakonov, M.M. 1962. Mechanical Properties and Drillability of Rocks. - Proc. 5th Symp. on Rock Mech. 103–118. Minnesota: Univ. Schwartz, A. E. 1964. Failure of Rock in the Triaxial Shear Test. Proc. 6th Symp. Rock Mech. 109–135. Rolla Missouri.
  • Sharma R.K., Chopra S. 2012. New Attribute for Determination of Lithology and Brittleness. 82nd Annual Int. Meeting, SEG, Expanded Abstracts, 1–4 Singh, S.P. 1986. Brittleness and the Mechanical Winning of Coal. Min. Sci.Tech, 3 173–180.
  • Su O., Sakız U., Köken E. 2014. Drillability Assessment of Rocks Based on Strength and Brittleness, 31st Ann. Int. Pittsburgh Coal Conf. (PCC 2014), 697–703. Tarasov B., Potvin Y. 2013. Universal Criteria for Rock Brittleness Estimation Under Triaxial Compression. Int. J. Rock Mech. Min. Sci. 59 57–69.
  • Thuro K., Spaun G. 1996. Introducing the Destruction Work ́ as A New Rock Property of Toughness Refering to Drillability in Conventional Drill and Blast Tunnelling. the ISRM Int. Symp. (Eurock 1996), 707–713, Turin-Italy.
  • Thuro K., Singer J., Käsling H., Bauer M. 2007. Determining Abrasivity with the LCPC Test. Proc. 1st Canada – U.S. Rock Mech. Symp., Vancouver B.C.,London: Taylor & Francis.(Ed. E. Eberhardt, D. Stead and T. Morrison).
  • Yagiz, S. 2009. Assesment of Brittleness Using Rock Strength and Density with Punch Penetration Test. Tunn. Undergr. Sp. Tech., 24 (1) 64–77.
  • Yagiz, Gokceoglu C. 2010. Application of Fuzzy Inference System and Nonlinear Regression Models for Predicting Rock Brittleness. Exp. Sys. App., 37 (3) 2265–2272.
  • Yarali, O., Kahraman, S. 2011. The Drillability Assessment of Rocks Using the Different Brittleness Values. Tunn. Undergr. Sp. Tech. 26 (2) 406–414.
  • Yaşar S., Yılmaz A.O., Çapik M. 2014. Kayaçların Kırılganlık Özellikleri ile Kazılabilirlik Değiştirgeleri Arasındaki İlişkilerin İncelenmesi. XI. Bölgesel Kaya Mekaniği Sempozyumu (KAYAMEK), Afyonkarahisar.
  • Xia Y.J., Li L.C., Tang. C.A., Li X.Y., Ma S., Li M. 2017. A New Method to Evaluate Rock Mass Brittleness Based on Dtress–strain Curves of Class I. Rock Mech Rock Eng. 50(5) 1123–1139.
  • Weiss, N.L. 1985. Jaw Crushers, SME Mineral Processing Handbook, Chapter. 3B-1, (Ed. Weiss N.L.), SME/AIME, New York.
  • Wills, B.A. 1992. Mineral Processing Technology. Pergamon Press, Oxford.
  • Wawersik, W.R., Fairhurst, C.A. 1970. A Study of Brittle Rock Fracture in Laboratory Compression Experiments. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr, 7: 561–575.
Year 2018, Volume: 57, 73 - 83, 15.12.2018
https://doi.org/10.30797/madencilik.493200

Abstract

References

  • Altindag R 2002. The Evaluation of Rock Brittleness Concept on Rotary Blasthole Drills. J. South Afr. Inst. Min. Metall. 102 61–66.
  • Bruland, A. 1998. Drillability Test Methods. NTNU Trondheim. BS 812-112 1990. British Standard: Testing Aggregates; Method for Determination of Aggregate Impact Value (AIV) 14pp.
  • Cai, M., Kaiser, P.K., Tasaka Y., Maejima T., Morioka H., Minami M. 2004. Generalized Crack Initiation and Crack Damage Stress Thresholds of Brittle Rock Masses near Underground Excavations. Int. J. Rock Mech. Min. Sci. 41 833–847.
  • Copur H., Bilgin N., Tuncdemir H., Balci C. 2003. A Set of Indices Based on Indentation Test for Assessment of Rock Cutting Performance and Rock Properties. J. South A. Inst. Min. Met. 103 (9) 589–600
  • Dahl, F. 2003. The Sugessted DRI, BWI, CLI Standards. NTNU, Angleggsdrift, Trondheim, Norway.
  • Dahl, F., Bruland A., Jakobsen P.D., Nilsen B., Grøv E., (2012) Classifications of Properties Influencing the Drillability of Rocks Based on the NTNU/SINTEF Test Method. Tunn. Undergr. Sp. Tech. 28 150–158.
  • Deere D.U., Miller R.P. 1966. Engineering Classification and Index Properties for İntact Rocks. Tech. Report. Air Force Weapons Lab., New Mexico, No. AFNL-TR, 65–116.
  • Duthoit, V. 2000. Crushing and Grinding. Aggregates, Ch. 9, (Ed. Louis Primel and Claude Tourenq). Balkema, Rotterdam.
  • Goktan, M. 1991. Brittleness and Micro-scale Rock Cutting Efficiency. Min. Sci.Tech., 13 237–241.
  • Gunaydin O., Kahraman S., Fener M. 2004. Sawability Prediction of Carbonate Rocks from Brittleness Indexes. J. South Afr. Inst. Min., 104(4) 239–243.
  • Guo Z., Chapman M., Li X. (2012). A Shale Rock Physics Model and İits Application in the Prediction of Brittleness İndex, Mineralogy, and Porosity of the Barnett Shale. SEG Annual Meeting, Soc. Expl. Geophy., 1–5 Las Vegas, Nevada
  • Hosseini R., Lashkaripour G.R., Moghadas N.H., Ghafoori M. 2015. Estimation of S20-Brittleness (As An İnput Parameter in Drilling Rate Index, DRI) Using Other Types of Brittleness. 11th Iranian and 2nd Regional Tunnel Conf. Tehran - Iran.
  • Howarth, D.F., Rowlands, J.C. 1987. Quantitative Assessment of Rock Texture and Correlation with Drillability and Strength Properties. Rock Mech. Rock Eng. 20 (1) 57–85.
  • Hucka V., Das B. 1974. Brittleness Determination of Rocks by Different Methods. Int. J. Rock Mech. Min. Sci. & Geo Abst., 11(10) 389–392.
  • ISRM 2007. The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974–2006. In: Ulusay R, Hudson JA (eds) Suggested methods prepared by the commission on testing methods. International Society for Rock Mechanics (ISRM), Ankara, Turkey.
  • Kahraman, S. 2002. Correlation of TBM and Drilling Machine Performance with Rock Brittleness. Eng. Geol., 65 269–283.
  • Kahraman S., Toraman O.Y. 2008. Predicting Los Angeles Abrasion Loss of Rock Aggregates from Crushability Index. Bull. Mat. Sci. 31(2) 173–177.
  • Meng F., Zhou H., Zhang C., Xu R., Lu J. 2015. Evaluation Methodology of Brittleness of Rock Based on Post-peak Stress–strain Curves. Rock Mech. Rock Eng. 48 1787–1805.
  • Nejati H.R., Ghazvinian A. 2014. Brittleness Effect on Rock Fatigue Damage Evolution. Rock Mech. Rock Eng. 47(5):1839–1848
  • Nejati H.R., Moosavi S.A. 2017. A New Brittleness Index for Estimation of Rock Fracture Toughness. Min & Environ. 8(1) 83–91.
  • Ozcelik Y. 2011. Predicting Los Angeles Abrasion of Rocks from Some Physical and Mechanical Properties. Sci. Res. Ess. 6(7) 1612–1619
  • Ozfirat M.K. Yenice H. Simsir F., Yarali O. 2016. A New Approach to Rock Brittleness and Its usability at Prediction of Drillability. J. A. Earth Sci. 119 94–101.
  • Pang, S. S., Goldsmith, W. 1990. Investigation of Crack Formation during Loading of the Brittle Rock. Rock Mech. Rock Eng. 23 53–63.
  • Protodyakonov, M.M. 1962. Mechanical Properties and Drillability of Rocks. - Proc. 5th Symp. on Rock Mech. 103–118. Minnesota: Univ. Schwartz, A. E. 1964. Failure of Rock in the Triaxial Shear Test. Proc. 6th Symp. Rock Mech. 109–135. Rolla Missouri.
  • Sharma R.K., Chopra S. 2012. New Attribute for Determination of Lithology and Brittleness. 82nd Annual Int. Meeting, SEG, Expanded Abstracts, 1–4 Singh, S.P. 1986. Brittleness and the Mechanical Winning of Coal. Min. Sci.Tech, 3 173–180.
  • Su O., Sakız U., Köken E. 2014. Drillability Assessment of Rocks Based on Strength and Brittleness, 31st Ann. Int. Pittsburgh Coal Conf. (PCC 2014), 697–703. Tarasov B., Potvin Y. 2013. Universal Criteria for Rock Brittleness Estimation Under Triaxial Compression. Int. J. Rock Mech. Min. Sci. 59 57–69.
  • Thuro K., Spaun G. 1996. Introducing the Destruction Work ́ as A New Rock Property of Toughness Refering to Drillability in Conventional Drill and Blast Tunnelling. the ISRM Int. Symp. (Eurock 1996), 707–713, Turin-Italy.
  • Thuro K., Singer J., Käsling H., Bauer M. 2007. Determining Abrasivity with the LCPC Test. Proc. 1st Canada – U.S. Rock Mech. Symp., Vancouver B.C.,London: Taylor & Francis.(Ed. E. Eberhardt, D. Stead and T. Morrison).
  • Yagiz, S. 2009. Assesment of Brittleness Using Rock Strength and Density with Punch Penetration Test. Tunn. Undergr. Sp. Tech., 24 (1) 64–77.
  • Yagiz, Gokceoglu C. 2010. Application of Fuzzy Inference System and Nonlinear Regression Models for Predicting Rock Brittleness. Exp. Sys. App., 37 (3) 2265–2272.
  • Yarali, O., Kahraman, S. 2011. The Drillability Assessment of Rocks Using the Different Brittleness Values. Tunn. Undergr. Sp. Tech. 26 (2) 406–414.
  • Yaşar S., Yılmaz A.O., Çapik M. 2014. Kayaçların Kırılganlık Özellikleri ile Kazılabilirlik Değiştirgeleri Arasındaki İlişkilerin İncelenmesi. XI. Bölgesel Kaya Mekaniği Sempozyumu (KAYAMEK), Afyonkarahisar.
  • Xia Y.J., Li L.C., Tang. C.A., Li X.Y., Ma S., Li M. 2017. A New Method to Evaluate Rock Mass Brittleness Based on Dtress–strain Curves of Class I. Rock Mech Rock Eng. 50(5) 1123–1139.
  • Weiss, N.L. 1985. Jaw Crushers, SME Mineral Processing Handbook, Chapter. 3B-1, (Ed. Weiss N.L.), SME/AIME, New York.
  • Wills, B.A. 1992. Mineral Processing Technology. Pergamon Press, Oxford.
  • Wawersik, W.R., Fairhurst, C.A. 1970. A Study of Brittle Rock Fracture in Laboratory Compression Experiments. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr, 7: 561–575.
There are 36 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Ekin Köken 0000-0003-0178-329X

Hamit Aydin This is me 0000-0003-2165-5869

Ahmet Özarslan This is me 0000-0001-8763-6420

Publication Date December 15, 2018
Submission Date May 22, 2018
Published in Issue Year 2018 Volume: 57

Cite

APA Köken, E., Aydin, H., & Özarslan, A. (2018). S20 KIRILGANLIK İNDEKSİNİN KAYAÇLARIN PARÇALANABİLİRLİĞİ AÇISINDAN İNCELENMESİ. Bilimsel Madencilik Dergisi, 57, 73-83. https://doi.org/10.30797/madencilik.493200
AMA Köken E, Aydin H, Özarslan A. S20 KIRILGANLIK İNDEKSİNİN KAYAÇLARIN PARÇALANABİLİRLİĞİ AÇISINDAN İNCELENMESİ. Mining. December 2018;57:73-83. doi:10.30797/madencilik.493200
Chicago Köken, Ekin, Hamit Aydin, and Ahmet Özarslan. “S20 KIRILGANLIK İNDEKSİNİN KAYAÇLARIN PARÇALANABİLİRLİĞİ AÇISINDAN İNCELENMESİ”. Bilimsel Madencilik Dergisi 57, December (December 2018): 73-83. https://doi.org/10.30797/madencilik.493200.
EndNote Köken E, Aydin H, Özarslan A (December 1, 2018) S20 KIRILGANLIK İNDEKSİNİN KAYAÇLARIN PARÇALANABİLİRLİĞİ AÇISINDAN İNCELENMESİ. Bilimsel Madencilik Dergisi 57 73–83.
IEEE E. Köken, H. Aydin, and A. Özarslan, “S20 KIRILGANLIK İNDEKSİNİN KAYAÇLARIN PARÇALANABİLİRLİĞİ AÇISINDAN İNCELENMESİ”, Mining, vol. 57, pp. 73–83, 2018, doi: 10.30797/madencilik.493200.
ISNAD Köken, Ekin et al. “S20 KIRILGANLIK İNDEKSİNİN KAYAÇLARIN PARÇALANABİLİRLİĞİ AÇISINDAN İNCELENMESİ”. Bilimsel Madencilik Dergisi 57 (December 2018), 73-83. https://doi.org/10.30797/madencilik.493200.
JAMA Köken E, Aydin H, Özarslan A. S20 KIRILGANLIK İNDEKSİNİN KAYAÇLARIN PARÇALANABİLİRLİĞİ AÇISINDAN İNCELENMESİ. Mining. 2018;57:73–83.
MLA Köken, Ekin et al. “S20 KIRILGANLIK İNDEKSİNİN KAYAÇLARIN PARÇALANABİLİRLİĞİ AÇISINDAN İNCELENMESİ”. Bilimsel Madencilik Dergisi, vol. 57, 2018, pp. 73-83, doi:10.30797/madencilik.493200.
Vancouver Köken E, Aydin H, Özarslan A. S20 KIRILGANLIK İNDEKSİNİN KAYAÇLARIN PARÇALANABİLİRLİĞİ AÇISINDAN İNCELENMESİ. Mining. 2018;57:73-8.

22562 22561 22560 22590 22558