Research Article
BibTex RIS Cite

Improving performances of friction rock bolts by using new spring plates

Year 2021, Volume: 60 Issue: 3, 131 - 135, 01.09.2021
https://doi.org/10.30797/madencilik.900175

Abstract

In this study, a new spring plate was designed and investigated for its usability with the split set type friction bolts. According to the results of this study, remarkable active support pressures can be practically supplied by compression of the new spring plate during the insertion of the split sets. In addition to easy supply of the active support pressure owing to the insertion of the bolts, the energy absorption capacity can be highly improved by use of the new spring plate. Furthermore, the new plate design is remarkably advantageous against the nonaxial loading condition which is very wide in the bolted rock masses.

References

  • Aksoy, C. O., Uyar, G. G., Posluk, E., Ogul, K., Topal, I., Kucuk, K., 2016. Nondeformable support system application at tunnel-34 of Ankara-Istanbul high speed railway Project. Structural Engineering and Me-chanics, 58, 869–886. https://doi.org/10.12989/sem.2016.58.5.869
  • Das, R., Singh, T. N., 2020. Effect of rock bolt support mechanism on tunnel deformation in jointed rock-mass: A numerical approach. Underground Space, onlinefirst, https://doi.org/10.1016/j.undsp.2020.06.001
  • Hassell, R., Villaescusa E., 2005. Overcoring techniques to assess in situ corrosion of galvanized friction bolts. In: Peng SS (ed), Proc 24th Int Conf on Ground Control in Mining, West Virginia University Morgantown, 349–356.
  • He, M., Gong, W., Wang, J., Qi, P., Tao, Z., Du, S., Peng, Y., 2014. Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance. International Journal of Rock Me-chanics and Mining Sciences, 67, 29-42. https://doi.org/10.1016/j.ijrmms.2014.01.007
  • Kang, H., Yang, J., Meng, X., 2015. Tests and analysis of mechanical behaviours of rock bolt components for China’s coal mine roadways. Journal of Rock Mechanics and Geotechnical Engineering, 7, 14-26. http://dx.doi.org/10.1016/j.jrmge.2014.12.002
  • Komurlu, E., Kesimal, A., 2013. Tunnelling and support materials from past to present. Scientific Mining Journal, 52, 33-47.
  • Komurlu, E., Kesimal, A., 2015. Improved performance of rock bolts using sprayed polyurea coating. Rock Mechanics and Rock Engineering, 48, 2179-2182. https://doi.org/10.1007/s00603-014-0696-4
  • Komurlu, E., Kesimal, A., 2017. Experimental study on usability of friction rock bolts with plastic body. International Journal of Geomechanics, 17(9), 04017058. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000960
  • Komurlu, E., Kesimal, A., Aksoy C. O., 2017. Use of polyamide-6 type engineering polymer as grouted rock bolt material. International Journal of Geosynthetics and Ground Engineering, 3, 37. https://doi.org/10.1007/s40891-017-0114-6
  • Komurlu, E., Kesimal, A., Colak, U., 2014. Effect of polyurea type thin spray-on liners on rock bolt performances. Scientific Mining Journal, 53, 13-18.
  • Li, C. C., 2010. Field observations of rock bolts in high stress rock masses, Rock Mechanics and Rock Engineering, 43, 491-496. https://doi.org/10.1007/s00603-009-0067-8
  • Li, C. C., Stjern, G., Myrvang, A., 2014. A review on the performance of conventional and energy-absorbing rockbolts. Journal of Rock Mechanics and Geotechnical Engineering, 6, 315-327. https://doi.org/10.1016/j.jrmge.2013.12.008
  • Nicholson, L., Hadjigeorgiou, J., 2018. Interpreting the results of in situ pull tests on friction rock stabilizers (FRS). Mining Technology, 127(1), 12-25. https://doi.org/10.1080/14749009.2017.1296669
  • Ranjbarnia, M., Fahimifar, A., Oreste, P., 2016. Practical method for the design of pretensioned fully grouted rockbolts in tunnels. International Journal of Geomechanics, 16(1), 04015012. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000464
  • Salcher, M., Bertuzzi, R., 2018. Results of pull tests of rock bolts and cable bolts in Sydney sandstone and shale. Tunnelling and Underground Space Technology, 74, 60–70. https://doi.org/10.1016/j.tust.2018.01.004
  • Stacey, T. R., 2016. Addressing the consequences of dynamic rock failure in underground excavations. Rock Mechanics and Rock Engineering, 49, 4091–4101. https://doi.org/10.1007/s00603-016-0922-3
  • Thompson, A.G., Villaescusa, E., 2014. Case studies of rock reinforcement components and systems testing. Rock Mechanics and Rock Engineering, 47, 1589–1602. https://doi.org/10.1007/s00603-014-0583-z
  • Villaescusa, E., Player, J. R., Thompson, A. G., 2014. A reinforcement design methodology for highly stressed rock masses. Proceedings of 8th Asian Rock Mechanics Symposium, Sapporo, Japan, 87-94
  • Wang, H., Li, S., Wang, Q., Wang, D., Li, W., Liu, P., Li, X., Chen, Y., 2019. Investigating the supporting effect of rock bolts in varying anchoring methods in a tunnel. Geomechanics and Engineering, 19 (6), 485-498. http://dx.doi.org/10.12989/gae.2019.19.6.485
  • Wu, Y., Ga, F., Chen, J., He, J., 2019. Experimental study on the performance of rock bolts in coal burst-prone mines. Rock Mechanics and Rock Engineering, 52, 3959–3970. https://doi.org/10.1007/s00603-019-01794-9
  • Zhang, J., Liu, L., Shao, J., Li, Q., 2019. Mechanical properties and application of right-hand rolling-thread steel bolt in deep and high-stress roadway, Metals, 9, 346. https://doi.org/10.3390/met9030346
  • Yang, J., Hou, S., Zhou, K., Oiao, B., Wang, H., Wei Q., 2019. Study on intensive design and control of chamber group under the condition of weak surrounding rock. Mining Science, 26, 223–240. https://doi.org/10.37190/msc192614
  • Zhigang, T., Fei, Z., Hongjian, W., Haijiang, Z., Yanyan, P., 2017. Innovative constant resistance large deformation bolt for rock support in high stressed rock mass. Arabian Journal of Geosciences, 10, 341. https://doi.org/10.1007/s12517-017-3127-5

Yeni yaylı plaka kullanımı ile sürtünmeli kaya saplamaları performanslarının iyileştirilmesi

Year 2021, Volume: 60 Issue: 3, 131 - 135, 01.09.2021
https://doi.org/10.30797/madencilik.900175

Abstract

Bu çalışma kapsamında yeni bir yaylı plaka tasarlanmış ve split set türü sürtünmeli kaya saplamaları ile birlikte kullanılabilirliği incelenmiştir. Elde edilen sonuçlara göre split setlerin montajı esnasında yaylı plakanın sıkışması ile önemli seviyelerde aktif tahkimat basıncı pratik olarak sağlanabilmektedir. Saplama montajı ile kolayca sağlanabilen aktif tahkimat basıncına ek olarak yeni yaylı plaka kullanımının enerji emme kapasitesi değerlerini yüksek oranda artırdığı belirlenmiştir. Ayrıca, saplama yapılmış kaya kütlelerinde yaygın yaşanan eksenel olmayan yüklenme durumu karşısında da yeni yaylı plakaların kaya saplaması performansını artırması sebebi ile avantajlı olduğu görülmüştür.

References

  • Aksoy, C. O., Uyar, G. G., Posluk, E., Ogul, K., Topal, I., Kucuk, K., 2016. Nondeformable support system application at tunnel-34 of Ankara-Istanbul high speed railway Project. Structural Engineering and Me-chanics, 58, 869–886. https://doi.org/10.12989/sem.2016.58.5.869
  • Das, R., Singh, T. N., 2020. Effect of rock bolt support mechanism on tunnel deformation in jointed rock-mass: A numerical approach. Underground Space, onlinefirst, https://doi.org/10.1016/j.undsp.2020.06.001
  • Hassell, R., Villaescusa E., 2005. Overcoring techniques to assess in situ corrosion of galvanized friction bolts. In: Peng SS (ed), Proc 24th Int Conf on Ground Control in Mining, West Virginia University Morgantown, 349–356.
  • He, M., Gong, W., Wang, J., Qi, P., Tao, Z., Du, S., Peng, Y., 2014. Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance. International Journal of Rock Me-chanics and Mining Sciences, 67, 29-42. https://doi.org/10.1016/j.ijrmms.2014.01.007
  • Kang, H., Yang, J., Meng, X., 2015. Tests and analysis of mechanical behaviours of rock bolt components for China’s coal mine roadways. Journal of Rock Mechanics and Geotechnical Engineering, 7, 14-26. http://dx.doi.org/10.1016/j.jrmge.2014.12.002
  • Komurlu, E., Kesimal, A., 2013. Tunnelling and support materials from past to present. Scientific Mining Journal, 52, 33-47.
  • Komurlu, E., Kesimal, A., 2015. Improved performance of rock bolts using sprayed polyurea coating. Rock Mechanics and Rock Engineering, 48, 2179-2182. https://doi.org/10.1007/s00603-014-0696-4
  • Komurlu, E., Kesimal, A., 2017. Experimental study on usability of friction rock bolts with plastic body. International Journal of Geomechanics, 17(9), 04017058. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000960
  • Komurlu, E., Kesimal, A., Aksoy C. O., 2017. Use of polyamide-6 type engineering polymer as grouted rock bolt material. International Journal of Geosynthetics and Ground Engineering, 3, 37. https://doi.org/10.1007/s40891-017-0114-6
  • Komurlu, E., Kesimal, A., Colak, U., 2014. Effect of polyurea type thin spray-on liners on rock bolt performances. Scientific Mining Journal, 53, 13-18.
  • Li, C. C., 2010. Field observations of rock bolts in high stress rock masses, Rock Mechanics and Rock Engineering, 43, 491-496. https://doi.org/10.1007/s00603-009-0067-8
  • Li, C. C., Stjern, G., Myrvang, A., 2014. A review on the performance of conventional and energy-absorbing rockbolts. Journal of Rock Mechanics and Geotechnical Engineering, 6, 315-327. https://doi.org/10.1016/j.jrmge.2013.12.008
  • Nicholson, L., Hadjigeorgiou, J., 2018. Interpreting the results of in situ pull tests on friction rock stabilizers (FRS). Mining Technology, 127(1), 12-25. https://doi.org/10.1080/14749009.2017.1296669
  • Ranjbarnia, M., Fahimifar, A., Oreste, P., 2016. Practical method for the design of pretensioned fully grouted rockbolts in tunnels. International Journal of Geomechanics, 16(1), 04015012. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000464
  • Salcher, M., Bertuzzi, R., 2018. Results of pull tests of rock bolts and cable bolts in Sydney sandstone and shale. Tunnelling and Underground Space Technology, 74, 60–70. https://doi.org/10.1016/j.tust.2018.01.004
  • Stacey, T. R., 2016. Addressing the consequences of dynamic rock failure in underground excavations. Rock Mechanics and Rock Engineering, 49, 4091–4101. https://doi.org/10.1007/s00603-016-0922-3
  • Thompson, A.G., Villaescusa, E., 2014. Case studies of rock reinforcement components and systems testing. Rock Mechanics and Rock Engineering, 47, 1589–1602. https://doi.org/10.1007/s00603-014-0583-z
  • Villaescusa, E., Player, J. R., Thompson, A. G., 2014. A reinforcement design methodology for highly stressed rock masses. Proceedings of 8th Asian Rock Mechanics Symposium, Sapporo, Japan, 87-94
  • Wang, H., Li, S., Wang, Q., Wang, D., Li, W., Liu, P., Li, X., Chen, Y., 2019. Investigating the supporting effect of rock bolts in varying anchoring methods in a tunnel. Geomechanics and Engineering, 19 (6), 485-498. http://dx.doi.org/10.12989/gae.2019.19.6.485
  • Wu, Y., Ga, F., Chen, J., He, J., 2019. Experimental study on the performance of rock bolts in coal burst-prone mines. Rock Mechanics and Rock Engineering, 52, 3959–3970. https://doi.org/10.1007/s00603-019-01794-9
  • Zhang, J., Liu, L., Shao, J., Li, Q., 2019. Mechanical properties and application of right-hand rolling-thread steel bolt in deep and high-stress roadway, Metals, 9, 346. https://doi.org/10.3390/met9030346
  • Yang, J., Hou, S., Zhou, K., Oiao, B., Wang, H., Wei Q., 2019. Study on intensive design and control of chamber group under the condition of weak surrounding rock. Mining Science, 26, 223–240. https://doi.org/10.37190/msc192614
  • Zhigang, T., Fei, Z., Hongjian, W., Haijiang, Z., Yanyan, P., 2017. Innovative constant resistance large deformation bolt for rock support in high stressed rock mass. Arabian Journal of Geosciences, 10, 341. https://doi.org/10.1007/s12517-017-3127-5
There are 23 citations in total.

Details

Primary Language English
Journal Section Orijinal Araştırma
Authors

Eren Kömürlü 0000-0002-2123-7678

Publication Date September 1, 2021
Submission Date March 20, 2021
Published in Issue Year 2021 Volume: 60 Issue: 3

Cite

APA Kömürlü, E. (2021). Improving performances of friction rock bolts by using new spring plates. Scientific Mining Journal, 60(3), 131-135. https://doi.org/10.30797/madencilik.900175
AMA Kömürlü E. Improving performances of friction rock bolts by using new spring plates. Mining. September 2021;60(3):131-135. doi:10.30797/madencilik.900175
Chicago Kömürlü, Eren. “Improving Performances of Friction Rock Bolts by Using New Spring Plates”. Scientific Mining Journal 60, no. 3 (September 2021): 131-35. https://doi.org/10.30797/madencilik.900175.
EndNote Kömürlü E (September 1, 2021) Improving performances of friction rock bolts by using new spring plates. Scientific Mining Journal 60 3 131–135.
IEEE E. Kömürlü, “Improving performances of friction rock bolts by using new spring plates”, Mining, vol. 60, no. 3, pp. 131–135, 2021, doi: 10.30797/madencilik.900175.
ISNAD Kömürlü, Eren. “Improving Performances of Friction Rock Bolts by Using New Spring Plates”. Scientific Mining Journal 60/3 (September 2021), 131-135. https://doi.org/10.30797/madencilik.900175.
JAMA Kömürlü E. Improving performances of friction rock bolts by using new spring plates. Mining. 2021;60:131–135.
MLA Kömürlü, Eren. “Improving Performances of Friction Rock Bolts by Using New Spring Plates”. Scientific Mining Journal, vol. 60, no. 3, 2021, pp. 131-5, doi:10.30797/madencilik.900175.
Vancouver Kömürlü E. Improving performances of friction rock bolts by using new spring plates. Mining. 2021;60(3):131-5.

22562 22561 22560 22590 22558