Research Article
BibTex RIS Cite

Effect of Different Ratios of Acetic Acid to Propionic Acid on Nitrogen Removal Performance in Anoxic-Aerobic Sequencing Batch Reactor

Year 2017, Volume: 8 Issue: 2, 135 - 141, 11.09.2017

Abstract

In this study, the effect of different ratios
acetic acid to propionic acid on nitrogen removal performance in anoxic-aerobic
sequencing batch reactor was investigated. COD and NH4+-N
removal were almost complete at all acetic acid/propionic acid ratios and were
not affected by the acetic acid / propionic acid ratio. However, NO3--N
removal decreased with decrease in acetic acid/propionic acid ratios. Consequently;
the total inorganic nitrogen (TIN) removal efficiencies in R1, R2, R3, R4 and
R5 were 55%, 52%, 49%, 45% and 43%, respectively. Experimental results show
that higher nitrogen removal efficiency is obtained with acetic acid and that
the nitrogen removal efficiency decreases as the propionic acid ratio increases
in the carbon source.

References

  • 1. APHA, AWWA, WCPF. (1998). Standard Methods for the Examination of Water and Wastewater, 20th Edition, American Public Health Association, Washington, D.C.
  • 2. Beaubien, A., Hu, U., Bellahcen, D., Urbain, V., Chang, J. (1995). Monitoring metabolic activity of denitrification processes using gas production measurements, Water Research, 29 (10): 2269-2274.
  • 3. Elefsiniotis, P., Li, D. (2006). The effect of temperature and carbon source on denitrification using volatile fatty acids, Biochemical Engineering Journal, 28, 148-155.
  • 4. Elefsiniotis, P., Warehamb, D.G., Smith, M.O. (2004). Use of volatile fatty acids from anacid-phase digester for denitrification, Journal Biotechnology, 114: 289–297.
  • 5. Fernandez-Nava, Y., Maranon, E., Castrillon, L. (2010). Denitrification of high nitrate concentration wastewater using alternative carbon sources, Journal of Hazardous Materials, 173: 682-688.
  • 6. Ge, S., Peng, Y., Wang, S., Lu, C., Zhu, Y. (2012). Nitrite accumulation under constant temperature in anoxic denitrification process: The effects of carbon sources and COD/NO3-N, Bioresource Technology, 114: 137-143.
  • 7. Gupta, S., Sharma, R. (1996). Biological oxidation of high strength nitrogenous wastewater, Water Research, 30 (3): 593-600.
  • 8. Lee, N.M., Welander, T. (1996). The effect of different carbon sources on respiratory denitrification in biological wastewater treatment, Journal of Fermentation. Bioengineering, 82: 277–285.
  • 9. Li, C., Cao, J., Ren, H., Tang, S. (2015). Comparison on kinetics and microbial community among denitrification process fed by different kinds of volatile fatty acids, Process Biochemistry, 50: 447-455.
  • 10. McDonald, D.V. (1990). Denitrification by fluidized biofilm reactor, Water Science and Technology, 22: 451–461.
  • 11. Obaja, D. Mace, S., Mata-Alvarez, J. (2005). Biological nutrient removal by a sequencing batch reactor (SBR) using an internal organic carbon source in digested piggery wastewater, Bioresource Technology, 96: 7–14.
  • 12. Osaka, T., Shirotani, K., Yoshie, S., Tsuned,a S. (2008). Effects of carbon source on denitrification efficiency and microbial community structure in a saline, Water Research, 42: 3709–3718.
  • 13. Pereira, M.A., Sousa, D.Z., Mota, M., Alves, M.M. (2004). Mineralization of LCFA associated with anaerobic sludge: kinetics, enhancement of methanogenic activity, and effect of VFA, Biotechnology and Bioengineering, 88 (4): 502–511.
  • 14. Rodriguez, D.C., Pino, N., Periuela, G. (2011). Monitoring the removal of nitrogen by applying a nitrification-denitrification process in a Sequencing Batch Reactor (SBR), Bioresource Technology, 102 (3): 2316-2321.
  • 15. Sawyer, C.N., McCarty, P.L., Parkin, G.F. (1994). Chemistry for environmental engineering. 4th ed. New York: McGraw-Hill.
  • 16. Schuch, R., Gensicke, R., Merkel, K., Winter, J. (2000). Nitrogen and DOC removal from wastewater streams of the metal-working industry, Water Research, 34: 295–303.
  • 17. Srinandan, C.S., Dsouza, G., Srivastava, N., Nayak, B.B., Nerurkar, A.S. (2012). Carbon sources influence the nitrate removal activity, commmunity structure and biofilm architecture, Bioresource Technology, 117: 292-299.
  • 18. van Rijn, J., Tal, Y., Barak, Y. (1996). Influence of volatile fatty acids on nitrite accumulation by a Pseudomonas stutzeri strain isolated from a denitrifying fluidized bed reactor, Applied and Environmental Microbiology, 62 (7): 2615-2620.
  • 19. Xu, Y.T. (1996). Volatile fatty acids carbon source for biological denitrification, Journal of Environmental Sciences, 8 (3): 257–268.
  • 20. Zhang, H., Jiang, J., Li, M., Yan, F., Gong, C., Wang, Q. (2016). Biological nitrate removal using a food waste-drived carbon source in synthetic wastewater and real sewage, Journal of Environmental Management, 166: 407-413.
  • 21. Zhao, L., Guo, J., Lian, J., Guo, Y., Yue, L., Gou, C., Zhang, C., Liu, X. (2015). Study of the dynamics and material transformation characteristics of nitrite denitrification in UASB, Biotechnology and Biotechnological Equipment, 29 (5): 907–914.
  • 22. Zheng, X., Wu, R., Chen, Y.G. (2011). Effect of ZnO nanoparticles on wastewater biological nutrient and phosphorus removal, Environmental Science and Technology, 45 (7): 2826-2830.

Anoksik-aerobik Ardışık Kesikli Reaktörde Azot Giderme Performansına Farklı Asetik Asit/Propiyonik Asit Oranlarının Etkisi

Year 2017, Volume: 8 Issue: 2, 135 - 141, 11.09.2017

Abstract

Bu çalışmada, anoksik-aerobik ardışık kesikli
reaktörde azot giderme performansına farklı asetik asit/propiyonik asit
oranlarının etkisi araştırılmıştır. KOİ ve NH4+-N
giderimi tüm asetik asit/propiyonik asit oranlarında hemen hemen tamamlanmış
olup, asetik asit/propiyonik asit oranından etkilenmemiştir. Ancak, NO3--N
giderimi asetik asit/propiyonik asit oranı azaldıkça azalmıştır. Buna bağlı
olarak; R1, R2, R3, R4 ve R5’de toplam inorganik azot (TIN) giderme verimleri
sırasıyla % 55, %52, % 49, % 45 ve % 43 olarak bulunmuştur. Deneysel sonuçlar,
asetik asit ile daha yüksek azot giderme verimi elde edildiğini ve karbon
kaynağında propiyonik asit oranı arttıkça azot giderme veriminin azaldığını
göstermiştir.

References

  • 1. APHA, AWWA, WCPF. (1998). Standard Methods for the Examination of Water and Wastewater, 20th Edition, American Public Health Association, Washington, D.C.
  • 2. Beaubien, A., Hu, U., Bellahcen, D., Urbain, V., Chang, J. (1995). Monitoring metabolic activity of denitrification processes using gas production measurements, Water Research, 29 (10): 2269-2274.
  • 3. Elefsiniotis, P., Li, D. (2006). The effect of temperature and carbon source on denitrification using volatile fatty acids, Biochemical Engineering Journal, 28, 148-155.
  • 4. Elefsiniotis, P., Warehamb, D.G., Smith, M.O. (2004). Use of volatile fatty acids from anacid-phase digester for denitrification, Journal Biotechnology, 114: 289–297.
  • 5. Fernandez-Nava, Y., Maranon, E., Castrillon, L. (2010). Denitrification of high nitrate concentration wastewater using alternative carbon sources, Journal of Hazardous Materials, 173: 682-688.
  • 6. Ge, S., Peng, Y., Wang, S., Lu, C., Zhu, Y. (2012). Nitrite accumulation under constant temperature in anoxic denitrification process: The effects of carbon sources and COD/NO3-N, Bioresource Technology, 114: 137-143.
  • 7. Gupta, S., Sharma, R. (1996). Biological oxidation of high strength nitrogenous wastewater, Water Research, 30 (3): 593-600.
  • 8. Lee, N.M., Welander, T. (1996). The effect of different carbon sources on respiratory denitrification in biological wastewater treatment, Journal of Fermentation. Bioengineering, 82: 277–285.
  • 9. Li, C., Cao, J., Ren, H., Tang, S. (2015). Comparison on kinetics and microbial community among denitrification process fed by different kinds of volatile fatty acids, Process Biochemistry, 50: 447-455.
  • 10. McDonald, D.V. (1990). Denitrification by fluidized biofilm reactor, Water Science and Technology, 22: 451–461.
  • 11. Obaja, D. Mace, S., Mata-Alvarez, J. (2005). Biological nutrient removal by a sequencing batch reactor (SBR) using an internal organic carbon source in digested piggery wastewater, Bioresource Technology, 96: 7–14.
  • 12. Osaka, T., Shirotani, K., Yoshie, S., Tsuned,a S. (2008). Effects of carbon source on denitrification efficiency and microbial community structure in a saline, Water Research, 42: 3709–3718.
  • 13. Pereira, M.A., Sousa, D.Z., Mota, M., Alves, M.M. (2004). Mineralization of LCFA associated with anaerobic sludge: kinetics, enhancement of methanogenic activity, and effect of VFA, Biotechnology and Bioengineering, 88 (4): 502–511.
  • 14. Rodriguez, D.C., Pino, N., Periuela, G. (2011). Monitoring the removal of nitrogen by applying a nitrification-denitrification process in a Sequencing Batch Reactor (SBR), Bioresource Technology, 102 (3): 2316-2321.
  • 15. Sawyer, C.N., McCarty, P.L., Parkin, G.F. (1994). Chemistry for environmental engineering. 4th ed. New York: McGraw-Hill.
  • 16. Schuch, R., Gensicke, R., Merkel, K., Winter, J. (2000). Nitrogen and DOC removal from wastewater streams of the metal-working industry, Water Research, 34: 295–303.
  • 17. Srinandan, C.S., Dsouza, G., Srivastava, N., Nayak, B.B., Nerurkar, A.S. (2012). Carbon sources influence the nitrate removal activity, commmunity structure and biofilm architecture, Bioresource Technology, 117: 292-299.
  • 18. van Rijn, J., Tal, Y., Barak, Y. (1996). Influence of volatile fatty acids on nitrite accumulation by a Pseudomonas stutzeri strain isolated from a denitrifying fluidized bed reactor, Applied and Environmental Microbiology, 62 (7): 2615-2620.
  • 19. Xu, Y.T. (1996). Volatile fatty acids carbon source for biological denitrification, Journal of Environmental Sciences, 8 (3): 257–268.
  • 20. Zhang, H., Jiang, J., Li, M., Yan, F., Gong, C., Wang, Q. (2016). Biological nitrate removal using a food waste-drived carbon source in synthetic wastewater and real sewage, Journal of Environmental Management, 166: 407-413.
  • 21. Zhao, L., Guo, J., Lian, J., Guo, Y., Yue, L., Gou, C., Zhang, C., Liu, X. (2015). Study of the dynamics and material transformation characteristics of nitrite denitrification in UASB, Biotechnology and Biotechnological Equipment, 29 (5): 907–914.
  • 22. Zheng, X., Wu, R., Chen, Y.G. (2011). Effect of ZnO nanoparticles on wastewater biological nutrient and phosphorus removal, Environmental Science and Technology, 45 (7): 2826-2830.
There are 22 citations in total.

Details

Journal Section Research Paper
Authors

Engin Gürtekin

Publication Date September 11, 2017
Published in Issue Year 2017 Volume: 8 Issue: 2

Cite

APA Gürtekin, E. (2017). Anoksik-aerobik Ardışık Kesikli Reaktörde Azot Giderme Performansına Farklı Asetik Asit/Propiyonik Asit Oranlarının Etkisi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(2), 135-141.