Research Article
BibTex RIS Cite

Radyal Akı Yönlendirmeli Sabit Mıknatıslı Fırçasız DC Motorun Oluk-Kutup Sayısı Değişiminin Manyetik Akı Yoğunluğu Üzerindeki Etkisinin Belirlenmesi

Year 2020, Volume: 11 Issue: Ek (Suppl.) 1, 256 - 265, 29.12.2020
https://doi.org/10.29048/makufebed.755628

Abstract

Sabit mıknatıslı fırçasız doğru akım makinaları (SMFDAM) son yıllarda birçok uygulamada kullanılmaya başlamıştır. Farklı yapısal özellikleri sayesinde evsel uygulamalardan elektrikli araçlara kadar kullanım alanı artmaktadır. Motorun tasarım sürecinde genel olarak iç veya dış rotorlu tasarımlar kullanılmakla birlikte, yüzey mıknatıslı, iç yüzey mıknatıslı veya gömülü mıknatıslı gibi farklı alternatif tasarımlar da gerçekleştirilmektedir. Bu çalışmada 1,5 kW gücünde bir SMFDA motorun tasarım modellemesi gerçekleştirilmiş ve farklı stator oluk sayıları ile farklı kutup sayılarının motorun değişik noktalarındaki manyetik akı yoğunluğu değişimlerini nasıl etkilediği incelenmiştir. Manyetik analiz sonuçları RMxprt programından elde edilmiştir. Stator diş ve boyunduruk kısımları, hava aralığı kısmı, rotor boyunduruk kısmı ve kutuplardaki manyetik akı yoğunluğu değişimleri analiz edilmiştir. En uygun oluk-kutup sayısı değerleri tespit edilmiştir.

References

  • Afjei, E., Hashemipour, O., Saati, M.A., Nezamabadi, M.M. (2007). A new hybrid brushless dc motor/generator without permanent magnet, IJE Transactions B: Applications 20(1): 77-86.
  • Ansys Maxwell 2D Electronic Design Automation Software. 2012. http://www.ansys.com.
  • Aslan, B., Semail, E., Korecki, J., Legranger, J. (2011). Slot/pole combinations choice for concentrated multiphase machines dedicated to mild-hybrid applications. IEEE International Conference on Industrial Applications of Electronics IECON’11, Nov 7-10, 2011, Melbourne, VIC, Australia, Book of Proceedings, 3698-3703p.
  • Ayçiçek, E., Bekiroğlu, N., Şenol, İ. (2012). Optimization of rotor structure for providing minimum cogging moment by using open slot method in axial flux permanent magnet motors, Journal of Engineering and Natural Sciences 30: 392-401.
  • Bayraktar, H.C. (2014). Fırçasız doğru akım motorlarının kontrolü. Seminer Tezi, İstanbul Aydın Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 73.
  • Çabuk, A.S. (2016). tekerlek içi fırçasız doğru akım motorlarının en iyi tasarımı için yeni bir yaklaşım. Doktora Tezi, Marmara Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 135.
  • Cabuk, A.S., Sağlam, S., Üstün, O. (2017). Impact of various slot-pole combinations on an in-wheel bldc motor performance. Istanbul University Journal of Electrical and Electronics Engineering 17(2): 3369-3375.
  • Dusane, P.M. (2016). Simulation of a brushless dc motor in ansys – maxwell 3d. Master Thesis, Czech Technical University, Czech Republic, 108.
  • Hendershot, J.R. (1990). Brushless dc motor phase, pole, and slot configurations. Proceedings of 9th International Symposium on Incremental Motion Control Systems and Devices, 1990, 146-159p.
  • Jafarboland, M., Mousavi, S.M. (2018). Investigation of unbalanced magnetic force in permanent magnet brushless dc machines with diametrically asymmetric winding. Journal of Operation and Automation in Power Engineering 6(2): 255-267.
  • Jafarishiadeh, S., Amini, M. (2017). Design and comparison of axial-flux pm bldc motors for direct drive electric vehicles: conventional or similar slot and pole combination. International Journal of Engineering Innovation & Research 6(1): 15-20.
  • Jafarishiadeh, S., Ardebili, M., Marashi, A.N. (2016). Investigation of pole and slot numbers in axial-flux pm bldc motors with single-layer windings for electric vehicles. 24th Iranian Conference on Electrical Engineering (ICEE), May 10-12, 2016, Shiraz, Iran, Book of Proceedings, 1444-1448p.
  • Ocak, C. (2018). Design and performance comparison of four-pole brushless dc motors with different pole/slot combinations. The International Journal of Energy & Engineering Sciences 3(3): 69-78.
  • Sahin, İ. (2010). Measurement of brushless dc motor characteristics and parameters and brushless dc motor design. Master Thesis, Middle East Technical University, Ankara, 219.
  • Waghmare, T., Choube, P.R., Dakre, A., Suryawanshi, A.M., Holambe, P. (2016). Design of internal permanent magnet brushless dc motor using ansys. International Journal of Research Publications in Engineering and Technology 2(4): 1-7.
  • Wu Y.C., Lin, B.W. (2012). Computer-aided design of a brushless dc motor with exterior-rotor configuration. Computer-Aided Design and Applications 9(4): 457-469.
  • Wu, Y.C., Chen, Y.T. (2015). Mitigation of cogging torque for brushless interior permanent-magnet motors. Sharif University of Technology Scientia Iranica Transactions B: Mechanical Engineering 22(6): 2163-2169.
  • Zhang, Y., Cheng M.C., Pillay, P. (2011). A novel hysteresis core loss model for magnetic laminations IEEE Transactions on Energy Conversion 26(4): 993-999.

Determination of the Effect of the Slot-Pole Number Change of the Radial-Flux Permanent Magnet Brushless DC Motor on the Magnetic Flux Density

Year 2020, Volume: 11 Issue: Ek (Suppl.) 1, 256 - 265, 29.12.2020
https://doi.org/10.29048/makufebed.755628

Abstract

Permanent magnet brushless direct current machines (PMBLDCM) have been used in many applications in recent years. Thanks to its different structural features, its usage area increases from domestic applications to electric vehicles. In the design process of the motor, although designs with inner or outer rotors are generally used, different alternative designs such as surface magnets, inner surface magnets or embedded magnets are also realized. In this study, design modeling of a 1.5 kW PMBLDC motor was performed and how different stator slot numbers and different pole numbers affect the magnetic flux density changes at different points of the motor were investigated. Magnetic analysis results were obtained from RMxprt program. Magnetic flux density changes of in the stator tooth and yoke parts, in the air gap part, rotor yoke part and in the poles were analyzed. The most appropriate slot-pole number values were determined.

References

  • Afjei, E., Hashemipour, O., Saati, M.A., Nezamabadi, M.M. (2007). A new hybrid brushless dc motor/generator without permanent magnet, IJE Transactions B: Applications 20(1): 77-86.
  • Ansys Maxwell 2D Electronic Design Automation Software. 2012. http://www.ansys.com.
  • Aslan, B., Semail, E., Korecki, J., Legranger, J. (2011). Slot/pole combinations choice for concentrated multiphase machines dedicated to mild-hybrid applications. IEEE International Conference on Industrial Applications of Electronics IECON’11, Nov 7-10, 2011, Melbourne, VIC, Australia, Book of Proceedings, 3698-3703p.
  • Ayçiçek, E., Bekiroğlu, N., Şenol, İ. (2012). Optimization of rotor structure for providing minimum cogging moment by using open slot method in axial flux permanent magnet motors, Journal of Engineering and Natural Sciences 30: 392-401.
  • Bayraktar, H.C. (2014). Fırçasız doğru akım motorlarının kontrolü. Seminer Tezi, İstanbul Aydın Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 73.
  • Çabuk, A.S. (2016). tekerlek içi fırçasız doğru akım motorlarının en iyi tasarımı için yeni bir yaklaşım. Doktora Tezi, Marmara Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 135.
  • Cabuk, A.S., Sağlam, S., Üstün, O. (2017). Impact of various slot-pole combinations on an in-wheel bldc motor performance. Istanbul University Journal of Electrical and Electronics Engineering 17(2): 3369-3375.
  • Dusane, P.M. (2016). Simulation of a brushless dc motor in ansys – maxwell 3d. Master Thesis, Czech Technical University, Czech Republic, 108.
  • Hendershot, J.R. (1990). Brushless dc motor phase, pole, and slot configurations. Proceedings of 9th International Symposium on Incremental Motion Control Systems and Devices, 1990, 146-159p.
  • Jafarboland, M., Mousavi, S.M. (2018). Investigation of unbalanced magnetic force in permanent magnet brushless dc machines with diametrically asymmetric winding. Journal of Operation and Automation in Power Engineering 6(2): 255-267.
  • Jafarishiadeh, S., Amini, M. (2017). Design and comparison of axial-flux pm bldc motors for direct drive electric vehicles: conventional or similar slot and pole combination. International Journal of Engineering Innovation & Research 6(1): 15-20.
  • Jafarishiadeh, S., Ardebili, M., Marashi, A.N. (2016). Investigation of pole and slot numbers in axial-flux pm bldc motors with single-layer windings for electric vehicles. 24th Iranian Conference on Electrical Engineering (ICEE), May 10-12, 2016, Shiraz, Iran, Book of Proceedings, 1444-1448p.
  • Ocak, C. (2018). Design and performance comparison of four-pole brushless dc motors with different pole/slot combinations. The International Journal of Energy & Engineering Sciences 3(3): 69-78.
  • Sahin, İ. (2010). Measurement of brushless dc motor characteristics and parameters and brushless dc motor design. Master Thesis, Middle East Technical University, Ankara, 219.
  • Waghmare, T., Choube, P.R., Dakre, A., Suryawanshi, A.M., Holambe, P. (2016). Design of internal permanent magnet brushless dc motor using ansys. International Journal of Research Publications in Engineering and Technology 2(4): 1-7.
  • Wu Y.C., Lin, B.W. (2012). Computer-aided design of a brushless dc motor with exterior-rotor configuration. Computer-Aided Design and Applications 9(4): 457-469.
  • Wu, Y.C., Chen, Y.T. (2015). Mitigation of cogging torque for brushless interior permanent-magnet motors. Sharif University of Technology Scientia Iranica Transactions B: Mechanical Engineering 22(6): 2163-2169.
  • Zhang, Y., Cheng M.C., Pillay, P. (2011). A novel hysteresis core loss model for magnetic laminations IEEE Transactions on Energy Conversion 26(4): 993-999.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Paper
Authors

Asım Gökhan Yetgin 0000-0003-3971-0504

Publication Date December 29, 2020
Acceptance Date August 21, 2020
Published in Issue Year 2020 Volume: 11 Issue: Ek (Suppl.) 1

Cite

APA Yetgin, A. G. (2020). Radyal Akı Yönlendirmeli Sabit Mıknatıslı Fırçasız DC Motorun Oluk-Kutup Sayısı Değişiminin Manyetik Akı Yoğunluğu Üzerindeki Etkisinin Belirlenmesi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(Ek (Suppl.) 1), 256-265. https://doi.org/10.29048/makufebed.755628