Kurs Oranı Ve Artık Gaz Kesrinin Otto Çevrimli Bir Motorun Performansına Etkisi
Year 2018,
Volume: 2 Issue: 2, 100 - 111, 30.09.2018
Emre Arabacı
,
Bayram Kılıç
Abstract
İçten yanmalı motorların tasarım
parametrelerinin pratik bir şekilde incelenmesi için sonlu zaman termodinamiği
modeli sıklıkla kullanılmaktadır. Yapılan bu çalışmada kurs oranı ve artık gaz
kesrinin, tersinmezlikler, ısı kayıpları ve sürtünmenin de hesaba katıldığı bir
otto çevrimli motorun performansı üzerindeki etkileri incelenmiştir. Çevrim
başlangıç sıcaklığı artık gaz kesrinin bir fonksiyonu olarak tanımlanmıştır. Bu
çalışma sonucunda kurs oranının artmasıyla, ve artık gaz kesrinin artmasıyla
birlikte motor performansında belirgin bir seviyede düşüş yaşandığı
görülmüştür.
References
- Caton, J. A. (2012). The thermodynamic characteristics of high efficiency, internal-combustion engines. Energy Conversion and Management, 58, 84-93, DOI: 10.1016/j.enconman.2012.01.005.
- Ebrahimi, R. (2011). Effects of mean piston speed, equivalence ratio and cylinder wall temperature on performance of an Atkinson engine. Mathematical and Computer Modelling, 53(5-6), 1289-1297, DOI: 10.1016/j.mcm.2010.12.015.
- Ebrahimi, R. (2011). Thermodynamic modeling of performance of a Miller cycle with engine speed and variable specific heat ratio of working fluid. Computers & Mathematics with Applications, 62(5), 2169-2176, DOI: 10.1016/j.camwa.2011.07.002.
- Ebrahimi, R. (2012). Performance analysis of an irreversible Miller cycle with considerations of relative air–fuel ratio and stroke length. Applied Mathematical Modelling, 36(9), 4073-4079, DOI: 10.1016/j.apm.2011.11.031.
- Ebrahimi, R. (2013). Thermodynamic Modeling of an Atkinson Cycle with respect to Relative Air-Fuel Ratio, Fuel Mass Flow Rate and Residual Gases. Acta Physica Polonica, A., 124(1), DOI: 10.12693/APhysPolA.124.29.
- Ebrahimi, R. (2014). Thermodynamic simulation of performance of an irreversible Otto cycle with engine speed and variable specific heat ratio of working fluid. Arabian Journal for Science and Engineering, 39(3), 2091-2096, DOI: 10.1007/s13369-013-0769-9.
- Ebrahimi, R., & Sherafati, M. (2013). Thermodynamic simulation of performance of a dual cycle with stroke length and volumetric efficiency. Journal of thermal analysis and calorimetry, 111(1), 951-957, DOI: 10.1007/s10973-012-2424-1.
- Ge, Y., Chen, L., & Qin, X. (2018). Effect of specific heat variations on irreversible Otto cycle performance. International Journal of Heat and Mass Transfer, 122, 403-409, DOI: 10.1016/j.ijheatmasstransfer.2018.01.132.
- Ge, Y., Chen, L., & Sun, F. (2008). Finite-time thermodynamic modelling and analysis of an irreversible Otto-cycle. Applied Energy, 85(7), 618-624, DOI: 10.1016/j.apenergy.2007.09.008.
- Ge, Y., Chen, L., & Sun, F. (2009). Finite-time thermodynamic modeling and analysis for an irreversible Dual cycle. Mathematical and Computer Modelling, 50(1-2), 101-108, DOI: 10.1016/j.mcm.2009.04.009.
- Gonca, G., & Sahin, B. (2016). The influences of the engine design and operating parameters on the performance of a turbocharged and steam injected diesel engine running with the Miller cycle. Applied Mathematical Modelling, 40(5-6), 3764-3782, DOI: 10.1016/j.apm.2015.10.044.
- Gonca, G., Sahin, B., & Ust, Y. (2013). Performance maps for an air-standard irreversible Dual–Miller cycle (DMC) with late inlet valve closing (LIVC) version. Energy, 54, 285-290, DOI: 10.1016/j.energy.2013.02.004.
- Gonca, G., Sahin, B., Ust, Y., & Parlak, A. (2015). Comprehensive performance analyses and optimization of the irreversible thermodynamic cycle engines (TCE) under maximum power (MP) and maximum power density (MPD) conditions. Applied Thermal Engineering, 85, 9-20, DOI: 10.1016/j.applthermaleng.2017.07.203.
- Wu, Z., Chen, L., Ge, Y., & Sun, F. (2018). Thermodynamic optimization for an air-standard irreversible Dual-Miller cycle with linearly variable specific heat ratio of working fluid. International Journal of Heat and Mass Transfer, 124, 46-57, DOI: doi.org/10.1016/j.ijheatmasstransfer.2018.03.049.
Year 2018,
Volume: 2 Issue: 2, 100 - 111, 30.09.2018
Emre Arabacı
,
Bayram Kılıç
References
- Caton, J. A. (2012). The thermodynamic characteristics of high efficiency, internal-combustion engines. Energy Conversion and Management, 58, 84-93, DOI: 10.1016/j.enconman.2012.01.005.
- Ebrahimi, R. (2011). Effects of mean piston speed, equivalence ratio and cylinder wall temperature on performance of an Atkinson engine. Mathematical and Computer Modelling, 53(5-6), 1289-1297, DOI: 10.1016/j.mcm.2010.12.015.
- Ebrahimi, R. (2011). Thermodynamic modeling of performance of a Miller cycle with engine speed and variable specific heat ratio of working fluid. Computers & Mathematics with Applications, 62(5), 2169-2176, DOI: 10.1016/j.camwa.2011.07.002.
- Ebrahimi, R. (2012). Performance analysis of an irreversible Miller cycle with considerations of relative air–fuel ratio and stroke length. Applied Mathematical Modelling, 36(9), 4073-4079, DOI: 10.1016/j.apm.2011.11.031.
- Ebrahimi, R. (2013). Thermodynamic Modeling of an Atkinson Cycle with respect to Relative Air-Fuel Ratio, Fuel Mass Flow Rate and Residual Gases. Acta Physica Polonica, A., 124(1), DOI: 10.12693/APhysPolA.124.29.
- Ebrahimi, R. (2014). Thermodynamic simulation of performance of an irreversible Otto cycle with engine speed and variable specific heat ratio of working fluid. Arabian Journal for Science and Engineering, 39(3), 2091-2096, DOI: 10.1007/s13369-013-0769-9.
- Ebrahimi, R., & Sherafati, M. (2013). Thermodynamic simulation of performance of a dual cycle with stroke length and volumetric efficiency. Journal of thermal analysis and calorimetry, 111(1), 951-957, DOI: 10.1007/s10973-012-2424-1.
- Ge, Y., Chen, L., & Qin, X. (2018). Effect of specific heat variations on irreversible Otto cycle performance. International Journal of Heat and Mass Transfer, 122, 403-409, DOI: 10.1016/j.ijheatmasstransfer.2018.01.132.
- Ge, Y., Chen, L., & Sun, F. (2008). Finite-time thermodynamic modelling and analysis of an irreversible Otto-cycle. Applied Energy, 85(7), 618-624, DOI: 10.1016/j.apenergy.2007.09.008.
- Ge, Y., Chen, L., & Sun, F. (2009). Finite-time thermodynamic modeling and analysis for an irreversible Dual cycle. Mathematical and Computer Modelling, 50(1-2), 101-108, DOI: 10.1016/j.mcm.2009.04.009.
- Gonca, G., & Sahin, B. (2016). The influences of the engine design and operating parameters on the performance of a turbocharged and steam injected diesel engine running with the Miller cycle. Applied Mathematical Modelling, 40(5-6), 3764-3782, DOI: 10.1016/j.apm.2015.10.044.
- Gonca, G., Sahin, B., & Ust, Y. (2013). Performance maps for an air-standard irreversible Dual–Miller cycle (DMC) with late inlet valve closing (LIVC) version. Energy, 54, 285-290, DOI: 10.1016/j.energy.2013.02.004.
- Gonca, G., Sahin, B., Ust, Y., & Parlak, A. (2015). Comprehensive performance analyses and optimization of the irreversible thermodynamic cycle engines (TCE) under maximum power (MP) and maximum power density (MPD) conditions. Applied Thermal Engineering, 85, 9-20, DOI: 10.1016/j.applthermaleng.2017.07.203.
- Wu, Z., Chen, L., Ge, Y., & Sun, F. (2018). Thermodynamic optimization for an air-standard irreversible Dual-Miller cycle with linearly variable specific heat ratio of working fluid. International Journal of Heat and Mass Transfer, 124, 46-57, DOI: doi.org/10.1016/j.ijheatmasstransfer.2018.03.049.