Research Article
BibTex RIS Cite

Yabani Büyüyen Bazı Yenilebilir Mantarların Element Bileşiminin Belirlenmesi

Year 2020, Volume: 11 Issue: 2, 129 - 137, 28.10.2020

Abstract

Bu çalışmanın amacı, yabani yetişmiş mantarların mineral içeriğini ve bazı yüksek derecede toksik elementlerini belirlemek ve detaylandırmaktır. Gümüşhane ilinden toplanan yirmi yenilebilir mantarın Potasyum (K), magnezyum (Mg), kalsiyum (Ca), manganez (Mn), demir (Fe), çinko (Zn), bakır (Cu), nikel (Ni), kadmiyum (Cd) ve kurşun (Pb) içeriği analiz edilmiştir. İncelenen mantarlarda, hem yararlı hem de toksik elementler çok geniş aralıkta değişiyordu. Mantarların minimum ve maksimum mineral içerikleri, K (4170-15747), Mg (295-2095), Ca (100-2778), Mn (3.82-170.25), Fe (50.25-1121.53) için mg/ g kurumadde olarak belirlendi. Örneklerde Zn (22.99-91.76), Cu (5.89-135.35), Ni (1.05-6.07), Cd (0.06-7.29) ve Pb (0.02-30.46 mg/kg kurumadde) aralığında belirlendi. Potasyum içeriğinin, tüm mantarlarda diğer minerallerden daha yüksek olduğu bulunmuştur. Mantarlarda kurşun ve kadmiyum Armillaria ostoyae dışındaki mantarlarda insan sağlığı için tehlikeli olmayan konsantrasyonlarda belirlenmiştir. Ayrıca Agrocybe dura'da K, Mg, Ca, Mn, Fe ve Ni konsantrasyonlarının yüksek olduğu belirlendi.

Supporting Institution

yok

Project Number

yok

Thanks

yok

References

  • Andreea, R., Zsigmonda, K.V., Izolda, K., István, U., Zoltán, M., Károly, H. (2018). Elemental composition of wild growing Agaricus campestris mushroom in urban and peri-urban regions of Transylvania (Romania). Journal of Food Composition and Analysis, 72 15–21.
  • Breitenbach, J., Kranzlın, F. (1984-2000). Fungi of Switzerland (Vol. 1–5). Switzerland: Verlag Mykologia Lucerne.
  • Bresinsky, A., Besl, H. (1990). A Colour Atlas of Poisonous Fungi (pp. 295). Stuttgart: Wolfe Publishing Ltd.
  • Buczacki, S. (1989). Fungi of Britain and Europe (pp. 320). Glasgow: William Collins Sons and Co Ltd.
  • Dahncke, M. R., Dahncke, S. M. (1989). 700 Pilze in Farbfotos (pp. 686). Stuttgart: AT Verlag Aarau. AOAC, 1990. Official Methods of Analysis of AOAC International (17.Edition). USA.
  • Cvetkovic, J.S., Mitic, V.D., Stankov-Jovanovic, V.P., Dimitrijevic, M.V., Nikolic-Mandic, S.D. (2015). Elemental composition of wild edible mushrooms from Serbia. Analitical Letter, 48(3): 2107–2121.
  • Çayir, A., Coşkun, M., Coşkun, M. (2010). The heavy metal content of wild edible mushroom samples collected in Canakkale Province, Turkey. Biological Trace Element Research, 134(2):212–219.
  • Demirbaş, A. 2000. Accumulation of heavy metals in some edible mushrooms from Turkey. Food Chemistry, 68: 415-419.
  • Falandysz, J., Borovicka, J. (2013). Macro and trace mineral constituents and radionuclides in mushrooms-health benefits and risks. Applied Microbiology and Biotechnology, 97: 477–501.
  • Falandysz, J., Gucia, M. (2008). Bioconcentration factors of mercury by Parasol mushroom (Macrolepiota procera). Environmental Geochemistry and Health, 30: 121–125.
  • Falandysz, J., Kawano, M., Swieczkowski, A., Brzostowski, A., Dadej, M. (2003). Total mercury in wild-grown higher mushrooms and underlying soil from Wdzydze Landscape Park, Northern Poland. Food Chemistry, 81: 21–26.
  • Falandysz, J., Szymczyk, K., Ichihashi, H., Bielawski, L., Gucia, M., Frankowska, A., Yamasaki, S. (2001). ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland. Food Additives and Contamination, 18: 503–513. Falandysz, J., Zhang, J., Wang, Y., Krasinska, G., Kojta, A., Saba, M., Shen, T., Li, T., Liu, H. (2015). Evaluation of the mercury contamination in mushrooms of genus Leccinum from two different regions of the world: accumulation, distribution and probable dietary intake. Scientific Total Environments, 537: 470–478.
  • Gençcelep, H., Uzun, Y., Tunçtürk, Y., Demirel, K. (2009). Determination of mineral contents of wild-grown edible mushrooms. Food Chemitry, 113: 1033–1036.
  • Isıloğlu, M., Yilmaz, F., Merdivan, M. (2001). Concentrations of trace elements in wild edible mushrooms. Food Chemistry, 73: 163–175.
  • JECFA, (2011). Safety Evaluation of Certain Contaminants in Food, Prepared by the Seventy-second Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA) WHO Food Additives Series, No. 959.
  • JECFA, (2012). Safety Evaluation of Certain Food Additives/Prepared by the Seventy Fourth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA) WHO Food Additives Series, No. 65.
  • Kalaĉ, P., Svoboda, L. (2000). A review of trace element concentrations in edible mushrooms. Food Chemistry, 69: 273–281.
  • Kalaĉ, P. (2016). Edible Mushrooms: Chemical Composition and Nutritional Value. Elsevier, Amsterdam, Netherlands.
  • Kalaĉ, P., Svoboda, L., Havlickova, B. (2004). Content of cadmium and mercury in edible mushroom. Journal Applied Biomedicine, 2: 15-20.
  • Kaya, A, Bağ, H. (2010). Trace Element Contents of Edible Macrofung Growing in Adıyaman (Turkey). Asian Journal of Chemistry 22: 1515-1521.
  • Keleş, A., Gençcelep, H., Demirel, K. (2017). Elemental Composition of Naturally Growing Wild Edible Mushroom. Journal of Natural Product and Plant Resources, 7 (4): 37-44.
  • Li, T., Wang, Y.Z., Zhang, J. (2011).Trace element content of Boletus tomentipes mushroom collected from Yunnan, China. Food Chemistry, 127: 1828-1830.
  • Liu, H., Zhang, J., Li, T. (2012). Mineral Element Levels in Wild Edible Mushrooms from Yunnan, China. Biological Trace Element Research, 147: 341-345. Mendil, D., Uluozlu, O.D., Tuzen, M. (2005). Determination of trace metal levels in seven fish species in lakes in Tokat, Turkey. Food Chemistry, 90 (1-2): 175-179.
  • Mleczek, M., Rzymski P., Budka, A., Siwulski, M., Jasińska, A., Kalač, P., Poniedziałek, B., Gąsecka, M., Niedzielski, P. (2018). Elemental characteristics of mushroom species cultivated in China and Poland. Journal of Food Composition and Analysis, 66, 168–178.
  • Okoro, I.O., Achuba, F.I. (2012). Proximate and mineral analysis of some wild edible mushrooms. African Journal of Biotechnology, 11: 7720–7724.
  • Rzymskia, P., Mleczekb,M., Siwulskic, M., Jasinskac, A., Budkad, A., Niedzielskie, P., Kalaĉ, P., Gaseckab, M., Budzynska, S. (2017). Multielemental analysis of fruit bodies of three cultivated commercial Agaricus species. Journal of Food Composition and Analysis, 59: 170–178.
  • Sanmeea, R., Dellb, B., Lumyongc, P. (2003). Nutritive value of popular wild edible mushrooms from northern Thailand. Food Chemistry, 82: 527-532.
  • Sarikürkcü C., Tepe B., Solak M.H., Çetinkaya, S. (2012). Metal Concentrations of Wild Edible Mushrooms from Turkey. Ecological Food Nutrition, 51(4): 346-363.
  • Sesli, E., Tuzen, M. (1999). Levels of trace elements in the fruiting bodies of macrofungi growing in the East Black Sea region of Turkey. Food Chemistry, 65: 453-460.
  • Soylak, M., Karatepe, A. U., Elci, L., Dogan, M. (2003). Column preconcentration/ separation and atomic absorption spectrometric determinations of some heavy metals in table salt samples using amberlite XAD-1180. Turkish Journal of Chemistry, 27: 235–242.
  • Soylak, M., Saracaoğlu , S., Tüzen, M., Mendil, M. (2005). Determination of trace metals in mushroom samples from Kayseri, Turkey. Food Chemistry, 92: 649-652.
  • Tüzen, M., Ozdemir, M., Demirbaş, A. (1998). Study of heavy metals in some cultivated and uncultivated mushrooms of Turkish origin. Food Chemistry, 63: 247-251.
  • Tüzen, M., Sesli, E., Soylak, M. (2007). Trace element levels of mushroom species from East Black Sea region of Turkey. Food Control, 18: 806–810.
  • Versantvoort, C.H.M., Oomen, A.G., Van de Kamp, E., Rompelberg, C.J.M., Sips, A.J.A. M. (2005). Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food Chemical Toxicology, 43: 31–40.
  • Wang, X.M., Zhang, J., Wu, L.H. (2014). A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chemistry, 151: 279-285.
  • WHO, (1989). World Health Organization Health principles of housing. Geneva, Switzerland. p54.
  • WHO, (1996). World Health Organization.Safety evaluation of certain food dditives. Italy.
  • Zsigmond, A. R., Varga, K., Kántor, I., Urák, I., May, Z., Héberger, K. (2018). Elemental composition of wild growing Agaricus campestris mushroom in urban and peri-urban regions of Transylvania (Romania). Journal of Food Composition and Analysis, 72,15–21.

Determination of Elemental Composition of Some Wild Growing Edible Mushrooms

Year 2020, Volume: 11 Issue: 2, 129 - 137, 28.10.2020

Abstract

The aim of this study was to determine and elaborate the mineral contents and the some highly toxic elements of wild grown-edible mushrooms. The potassium (K), magnesium (Mg), calcium (Ca), manganese (Mn), iron (Fe), zinc (Zn), copper (Cu), nickel (Ni), cadmium (Cd) and lead (Pb) contents of twenty edible mushrooms, collected from Gümüşhane province, Turkey, were analyzed. The studied mushrooms varied widely in their content of both essential and toxic deleterious elements. The minimum and maximum mineral contents of mushrooms were determined as mg/kg dw for K (4170-15747), Mg (295-2095), Ca (100-2778), Mn (3.82-170.25), Fe (50.25-1121.53), Zn (22.99-91.76), Cu (5.89-135.35), Ni (1.05-6.07), Cd (0.06-7.29) and Pb (0.02-32.31) were determined. The potassium content was found to be higher than those of the other minerals in all the mushrooms. Lead and cadmium were present but at concentrations that are not hazardous to human health except for Armillaria ostoyae. The K, Mg, Ca, Mn, Fe, and Ni concentrations were determined to be high in Agrocybe dura.

Project Number

yok

References

  • Andreea, R., Zsigmonda, K.V., Izolda, K., István, U., Zoltán, M., Károly, H. (2018). Elemental composition of wild growing Agaricus campestris mushroom in urban and peri-urban regions of Transylvania (Romania). Journal of Food Composition and Analysis, 72 15–21.
  • Breitenbach, J., Kranzlın, F. (1984-2000). Fungi of Switzerland (Vol. 1–5). Switzerland: Verlag Mykologia Lucerne.
  • Bresinsky, A., Besl, H. (1990). A Colour Atlas of Poisonous Fungi (pp. 295). Stuttgart: Wolfe Publishing Ltd.
  • Buczacki, S. (1989). Fungi of Britain and Europe (pp. 320). Glasgow: William Collins Sons and Co Ltd.
  • Dahncke, M. R., Dahncke, S. M. (1989). 700 Pilze in Farbfotos (pp. 686). Stuttgart: AT Verlag Aarau. AOAC, 1990. Official Methods of Analysis of AOAC International (17.Edition). USA.
  • Cvetkovic, J.S., Mitic, V.D., Stankov-Jovanovic, V.P., Dimitrijevic, M.V., Nikolic-Mandic, S.D. (2015). Elemental composition of wild edible mushrooms from Serbia. Analitical Letter, 48(3): 2107–2121.
  • Çayir, A., Coşkun, M., Coşkun, M. (2010). The heavy metal content of wild edible mushroom samples collected in Canakkale Province, Turkey. Biological Trace Element Research, 134(2):212–219.
  • Demirbaş, A. 2000. Accumulation of heavy metals in some edible mushrooms from Turkey. Food Chemistry, 68: 415-419.
  • Falandysz, J., Borovicka, J. (2013). Macro and trace mineral constituents and radionuclides in mushrooms-health benefits and risks. Applied Microbiology and Biotechnology, 97: 477–501.
  • Falandysz, J., Gucia, M. (2008). Bioconcentration factors of mercury by Parasol mushroom (Macrolepiota procera). Environmental Geochemistry and Health, 30: 121–125.
  • Falandysz, J., Kawano, M., Swieczkowski, A., Brzostowski, A., Dadej, M. (2003). Total mercury in wild-grown higher mushrooms and underlying soil from Wdzydze Landscape Park, Northern Poland. Food Chemistry, 81: 21–26.
  • Falandysz, J., Szymczyk, K., Ichihashi, H., Bielawski, L., Gucia, M., Frankowska, A., Yamasaki, S. (2001). ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland. Food Additives and Contamination, 18: 503–513. Falandysz, J., Zhang, J., Wang, Y., Krasinska, G., Kojta, A., Saba, M., Shen, T., Li, T., Liu, H. (2015). Evaluation of the mercury contamination in mushrooms of genus Leccinum from two different regions of the world: accumulation, distribution and probable dietary intake. Scientific Total Environments, 537: 470–478.
  • Gençcelep, H., Uzun, Y., Tunçtürk, Y., Demirel, K. (2009). Determination of mineral contents of wild-grown edible mushrooms. Food Chemitry, 113: 1033–1036.
  • Isıloğlu, M., Yilmaz, F., Merdivan, M. (2001). Concentrations of trace elements in wild edible mushrooms. Food Chemistry, 73: 163–175.
  • JECFA, (2011). Safety Evaluation of Certain Contaminants in Food, Prepared by the Seventy-second Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA) WHO Food Additives Series, No. 959.
  • JECFA, (2012). Safety Evaluation of Certain Food Additives/Prepared by the Seventy Fourth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA) WHO Food Additives Series, No. 65.
  • Kalaĉ, P., Svoboda, L. (2000). A review of trace element concentrations in edible mushrooms. Food Chemistry, 69: 273–281.
  • Kalaĉ, P. (2016). Edible Mushrooms: Chemical Composition and Nutritional Value. Elsevier, Amsterdam, Netherlands.
  • Kalaĉ, P., Svoboda, L., Havlickova, B. (2004). Content of cadmium and mercury in edible mushroom. Journal Applied Biomedicine, 2: 15-20.
  • Kaya, A, Bağ, H. (2010). Trace Element Contents of Edible Macrofung Growing in Adıyaman (Turkey). Asian Journal of Chemistry 22: 1515-1521.
  • Keleş, A., Gençcelep, H., Demirel, K. (2017). Elemental Composition of Naturally Growing Wild Edible Mushroom. Journal of Natural Product and Plant Resources, 7 (4): 37-44.
  • Li, T., Wang, Y.Z., Zhang, J. (2011).Trace element content of Boletus tomentipes mushroom collected from Yunnan, China. Food Chemistry, 127: 1828-1830.
  • Liu, H., Zhang, J., Li, T. (2012). Mineral Element Levels in Wild Edible Mushrooms from Yunnan, China. Biological Trace Element Research, 147: 341-345. Mendil, D., Uluozlu, O.D., Tuzen, M. (2005). Determination of trace metal levels in seven fish species in lakes in Tokat, Turkey. Food Chemistry, 90 (1-2): 175-179.
  • Mleczek, M., Rzymski P., Budka, A., Siwulski, M., Jasińska, A., Kalač, P., Poniedziałek, B., Gąsecka, M., Niedzielski, P. (2018). Elemental characteristics of mushroom species cultivated in China and Poland. Journal of Food Composition and Analysis, 66, 168–178.
  • Okoro, I.O., Achuba, F.I. (2012). Proximate and mineral analysis of some wild edible mushrooms. African Journal of Biotechnology, 11: 7720–7724.
  • Rzymskia, P., Mleczekb,M., Siwulskic, M., Jasinskac, A., Budkad, A., Niedzielskie, P., Kalaĉ, P., Gaseckab, M., Budzynska, S. (2017). Multielemental analysis of fruit bodies of three cultivated commercial Agaricus species. Journal of Food Composition and Analysis, 59: 170–178.
  • Sanmeea, R., Dellb, B., Lumyongc, P. (2003). Nutritive value of popular wild edible mushrooms from northern Thailand. Food Chemistry, 82: 527-532.
  • Sarikürkcü C., Tepe B., Solak M.H., Çetinkaya, S. (2012). Metal Concentrations of Wild Edible Mushrooms from Turkey. Ecological Food Nutrition, 51(4): 346-363.
  • Sesli, E., Tuzen, M. (1999). Levels of trace elements in the fruiting bodies of macrofungi growing in the East Black Sea region of Turkey. Food Chemistry, 65: 453-460.
  • Soylak, M., Karatepe, A. U., Elci, L., Dogan, M. (2003). Column preconcentration/ separation and atomic absorption spectrometric determinations of some heavy metals in table salt samples using amberlite XAD-1180. Turkish Journal of Chemistry, 27: 235–242.
  • Soylak, M., Saracaoğlu , S., Tüzen, M., Mendil, M. (2005). Determination of trace metals in mushroom samples from Kayseri, Turkey. Food Chemistry, 92: 649-652.
  • Tüzen, M., Ozdemir, M., Demirbaş, A. (1998). Study of heavy metals in some cultivated and uncultivated mushrooms of Turkish origin. Food Chemistry, 63: 247-251.
  • Tüzen, M., Sesli, E., Soylak, M. (2007). Trace element levels of mushroom species from East Black Sea region of Turkey. Food Control, 18: 806–810.
  • Versantvoort, C.H.M., Oomen, A.G., Van de Kamp, E., Rompelberg, C.J.M., Sips, A.J.A. M. (2005). Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food Chemical Toxicology, 43: 31–40.
  • Wang, X.M., Zhang, J., Wu, L.H. (2014). A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chemistry, 151: 279-285.
  • WHO, (1989). World Health Organization Health principles of housing. Geneva, Switzerland. p54.
  • WHO, (1996). World Health Organization.Safety evaluation of certain food dditives. Italy.
  • Zsigmond, A. R., Varga, K., Kántor, I., Urák, I., May, Z., Héberger, K. (2018). Elemental composition of wild growing Agaricus campestris mushroom in urban and peri-urban regions of Transylvania (Romania). Journal of Food Composition and Analysis, 72,15–21.
There are 38 citations in total.

Details

Primary Language English
Journal Section RESEARCH ARTICLE
Authors

Ali Keleş 0000-0002-9087-0805

Hüseyin Gençcelep 0000-0002-8689-7722

Project Number yok
Publication Date October 28, 2020
Published in Issue Year 2020 Volume: 11 Issue: 2

Cite

APA Keleş, A., & Gençcelep, H. (2020). Determination of Elemental Composition of Some Wild Growing Edible Mushrooms. Mantar Dergisi, 11(2), 129-137.

The works submitted to our journals are first judged grammatically. After this phase, articles are sent two reviewers. If necessary, the third reviewer is assessed. In the publication of works, a decision is made by evaluating the level of contribution to science and readers within the criteria specified in the writing rules. Reviewers are requested to submit their assessments within 30 days at the latest. The reviewers' evaluations and the answers to these evaluations are reviewed by the editor and it is decided whether the work will be published or not.

International Peer Reviewed Journal

The journal doesn’t have APC or any submission charges

Creative Commons Lisansı
This work is licensed under a Creative Commons Attribution 4.0 License