BibTex RIS Cite

Phytoremediation of Organic Pollutants: Uptake and Degradation Mechanisms

Year 2011, Volume: 23 Issue: 3, 123 - 139, 04.12.2011

Abstract

Phytoremediation which is defined as cleaning of the contaminated soil, water and air as a result of human activities by using plants, as an environmentally friendly and alternative technology to be promising. The removal of organic pollutants accumulated in organisms habitat’s as a result of environmental pollution, has a great importance because of their toxic, mutagen and carcinogen structures. Depending on their chemical properties organic pollutants may be degraded in the rhizosphere or taken up by plants, and then may be degradation in plant cells or sequestrated with conjugation in vacuol or cell wall areas or volatilization. In this review, uptake of organic compounds by plants and the degradation mechanisms of them in plant tissues were discussed.

References

  • Kösesakal, T. (2011). Tatlı Su Eğreltisi Azolla filiculoides Lam. Kullanılarak Petrol
  • Hidrokarbonlarının Fitoremediasyonu. Doktora Tezi. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü.
  • Greenberg, B.M., Huang, X.-D., Gerhardt, K., Glick, B.R., Gurska, J., Wang, W., Lampi,
  • M., Khalid, A., Isherwood, D., Chang, P., Wang, H., Wu, S.S., YU, X.-M., Dixon, D.G.,
  • Gerwing, P. (2007). Field and laboratory tests of a multi-process phytoremediation system for
  • decontamination of petroleum and salt impacted soils, In: Proceedings of the Ninth
  • International In Situ and On-Site Remediation Symposium. Gavaskar, A.R. and Silver C.F.,
  • eds., Batelle Press, Columbus, OH.
  • Chappell, J., (1997). Phytoremediation of TCE using Populus, Status Report prepared for
  • the U.S. EPA Technology Innovation Office under a National Network of Environmental
  • Management Studies Fellowship Compiled June-August 1997, Available on-line at:
  • http://www.clu-in.org/download/studentpapers/phytotce.pdf.
  • Pilon-Smits, E. (2005). Phytoremediation, Annu. Rev. Plant Biol., 56, 15-39.
  • Newman, L.A., Strand, S.E., Choe, N., Duffy, J., Ekuan, G., Ruszaj, M., Shurtleff, B.B.,
  • Wilmoth, J., Heilman, P., Gordon, M.P. (1997). Uptake and biotransformation of
  • trichloroethylene by hybrid poplars. Environ. Sci. Technol., 31, 1062-1067.
  • Shang, T.Q., Newman, L.A., Gordon, M.P. (2003). Fate of tricholorethylene in terrestrial
  • plants. In Phytoremediation: Transformation and Control of Contaminants, ed. SC
  • McCutcheon, JL Schnoor, Wiley, New York.
  • Burken, J.G., Schnoor, J.L. (1997). Uptake and metabolism of atrazine by poplar trees. Environ. Sci. Technol., 31, 1399-1406.
  • Hughes, J.B., Shanks, J., Vanderford, M., Lauritzen, J., Bhadra, R. (1997). Transformation of TNT by aquatic plants and plant tissue cultures. Environ. Sci. Technol., 31, 266-271.
  • Aprill, W., Sims, R.C. (1990). Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere, 20, 253-265.
  • Olson, P.E., Reardon, K.F., Pilon-Smits, E.A.H., (2003). Ecology of rhizosphere bioremediation. In Phytoremediation: Transformation and Control of Contaminants, ed. SC McCutcheon, JL Schnoor, Wiley, New York.
  • Harms, H., Bokern, M., Kolb, M., Bock, C. (2003). Transformation of organic contaminants by different plant systems, In Phytoremediation: Transformation and Control of Contaminants, ed. SC McCutcheon, JL Schnoor, Wiley, New York.
  • Trapp, S., McFarlane, C. (1995). Plant Contamination: Modeling and Simulation of Organic Processes, Lewis, Boca Raton, FL.
  • Davis, L.C., Erickson, L.E., Narayanan, N., Zhang, Q. (2003). Modeling and design of phytoremediation, In Phytoremediation:Transformation and Control of Contaminants, ed.SC, McCutcheon, JL Schnoor, Wiley, New York.
  • Susarla, S., Medina, V.F., McCutcheon, S.C. (2002). Phytoremediation: An ecological solution to organic chemical contamination. Ecol. Eng., 18, 647-658.
  • Bowen, G.C., Rovira, A.D. (1991). The rhizosphere—the hidden half of the hidden half. In Plant Roots-The Hidden Half, eds. YWaisel, A Eshel, U Kaffkafi, Marcel Dekker, New York.
  • Macek, T., Macková, M., Kás, J. (2000). Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Adv., 18, 23-34.
  • Kapulnik, Y. (1996). Plant growth promotion by rhizosphere bacteria, In Plant Roots— The Hidden Half, ed. YWaisel, A Eshel, U Kaffkafi, Marcel Dekker, New York.
  • Volkering, F., Breure, A.M., Rulkens, W.H. (1998). Microbiological aspects of surfactant use for biological soil remediation. Biodegrad., 8, 401-417.
  • Siciliano, S.D., Germida, J.J. (1998). Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ. Rev., 6, 65-79.
  • Nichols, T.D., Wolf, D.C., Rogers, H.B., Beyrouty, C.A., Reynolds, C.M. (1997). Rhizosphere microbial populations in contaminated soils. Wat. Air Soil Pollut., 95, 165- 178.
  • Pradhan, S.P., Conrad, J.R., Paterek, J.R., Srivastava, V.J. (1998). Potential of phytoremediation for treatment of PAHs in soil at MGP Sites. Soil and Sediment Contam. Int. J., 7, 467-480.
  • Macková, M., Macek, M., Kucerová, T., Burkhard, J., Tríska, J., Demnerová, K. (1998). Plant tissue cultures in model studies of transformation of polychlorinated biphenyls. Chem. Pap., 52, 599-600.
  • Leigh, M.B., Fletcher, J.S., Fu, X., Schmitz, F.J. (2002). Root turnover: an important source of microbial substances in rhizosphere remediation of recalcitrant contaminants. Environ. Sci. Technol., 36, 1579-1583.
  • Briggs, G.G., Bromilow, R.H., Evans, A.A. (1982). Relationships between lipophilicity and root uptake and translocation of non-ionized chemicals by barley. Pestic. Sci., 13, 405-504.
  • Ross, S.M. (1994). Toxic metals in soil-plant systems, Chichester, Wiley, England.
  • Higuchi, K., Suzuki, K., Nakanishi, H., Yamaguchi, H., Nishizawa, N.K., Mori, S. (1999). Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol., 119, 471-480.
  • Stephan, U.W., Schmidke, I., Stephan, V.W., Scholz, G. (1996). The nicotianamine molecule is made-to-measure for complexation of metal micronutrients in plants. Biometals, 9, 84-90.
  • Küpper, H., Mijovilovich, A., Meyer-Klaucke, W., Kroneck, M.H. (2004). Tissue- and qge-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype) revealed by x- ray absorption spectroscopy. Plant Physiol., 134, 748-757.
  • Cobbett, C.S., Goldsbrough, P.B. (2000). Mechanisms of metal resistance: phytochelatins and metallothioneins, In Phytoremediation of Toxic Metals. Using Plants to Clean up the Environment, ed. I Raskin, BD Ensley, Wiley, New York.
  • Taiz, L., Zeiger, E. (2002). Plant Physiology. Sunderland, MA: Sinauer.
  • Burken, J.G. (2003). Uptake and metabolism of organic compounds: green-liver model. In Phytoremediation: Transformation and Control of Contaminants, ed. SC McCutcheon, JL Schnoor, Wiley, New York.
  • Hale, K.L., McGrath, S., Lombi, E., Stack, S., Terry, N, Pickering, I.J., George, G.N., Pilon-Smits, E.A.H. (2001). Molybdenum sequestration in Brassica: a role for anthocyanins?. Plant Physiology, 126, 1391-1402.
  • Neuefeind, T., Reinemer, P., Bieseler, B. (1997). Plant glutathione S-transferases and herbicide detoxification. Biologic. Chem., 378, 199-205.
  • Sandermann, H. (1994). Higher plant metabolism of xenobiotics: the “green liver” concept. Pharmacogenetics, 4, 225-241.
  • Marrs, K.A., Alfenito, M.R., Lloyd, A.M., Walbot, V.A. (1995). Glutathione s- transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nat., 375, 397-400.
  • Wolf, A.E., Dietz, K.J., Schroder, P. (1996). Degradation of glutathione s-conjugates by a carboxypeptidase in the plant vacuole. FEBS Letters, 384, 31-34.
  • Coleman, J.O.D., Blake-Kalff, M.M.A., Davies, T.G.E. (1997). Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci., 2, 144-51.
  • Abhilash, P.C., Jamil, S., Singh, N. (2009). Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol. Adv., 27, 474- 488.
  • McCutcheon, S.C., Medina, V.F., Larson, S.L. (2003). Proof of phytoremediation for explosives in water and soil, In Phytoremediation: Transformation and Control of Contaminants, ed. SC McCutcheon, JL Schnoor, Wiley, New York.
  • Marrs, K.A. (1996). The functions and regulation of glutathione s-transferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 47, 127-158.
  • McCutcheon, S.C., Schnoor, J.L. (2003). Overview of Phytotransformation and Control of Wastes, Phytoremediation: Transformation and Control of Contaminants, S. McCutcheon and J. Schnoor (eds.), John Wiley & Sons, Inc., Hoboken, NJ.
  • Barac, T., Taghavi, S., Borremans, B., Provoost, A., Oeyen, L., Colpaert, J.V., Vangronsveld, J., van der Lelie, D. (2004). Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat. Biotechnol., 22 (5), 583-588.
  • McGuinness, M., Dowling, D. (2009). Plant-Associated Bacterial Degradation of Toxic Organic Compounds in Soil. Int. J. Environ. Res. Public. Health, 6, 2226-2247.
  • Kvesitadze, E., Sadunishvili, T., Kvesitadze, G. (2009). Mechanisms of Organic Contaminants Uptake and Degradation in Plants. World Acad. Sci. Eng. Technol., 55, 458-468.
  • Wolfe, N.L., Hoehamer, C.F. (2003). Enzymes used by plants and microorganisms to detoxify organic compounds, In Phytoremediation: Transformation and Control of Contaminants, ed. SC McCutcheon, JL Schnoor, Wiley, New York.
  • Gerhardt, K.E., Huang, X.-D., Glick, B.R., Greenberg, B.M. (2009). Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Sci., 176, 20-30.
  • Campanella, B., Paul, R. (2000). Presence, in the rhizosphere and leaf extracts of zucchini (Cucurbita pepo L.) and melon (Cucumis melo L.) of molecules capable of increasing the apparent aqueous solubility of hydrophobic pollutants. Int. J. Phytoremediat., 2, 145-158.
  • Schwitzguébel, J.-P. (2001). Hype or Hope: The Potential of Phytoremediation as an Emerging Green Technology. Remediat., 11 (4) 63-78.
  • Andrew, C.S., David E.C., Ian P.T. (2003). Secondary plant metabolites in phytoremediation and biotransformation. Trends in Biotechnol. 21(3), 123-130.
  • Tront, J.M. (2004). Plant Activity and Organic Contaminant Processing by Aquatic Plants, Thesis (PhD), School of Civil and Environmental Engineering, Georgia Institute of Technology.
  • Van Aken, B. (2008). Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends in Biotechnol., 26 (5), 225-227.
  • Hadacek, F. (2002). Secondary metabolites as plant traits: current assessment and future perspectives. CRC Crit. Rev. Plant Sci., 21, 273-322.
  • Dixon, R. (2001). Natural products and plant disease resistance. Nat., 411, 843-847.
  • Miya, R.K., Firestone, M.K. (2001). Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris. J. Environ. Qual., 30, 1911-1918.
  • Isidorov, V., Jdanova, M. (2002). Volatile organic compounds from leaves litter. Chemosphere, 48, 975-979.
  • Meyer, D.G., Capieau, K., Audenaert, K., Buchala, A., Métraux, J.P., Höfte, M. (1999). Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol. Plant Microbe Interact., 12, 450-458.
  • Yen, K-M., Gunsalus, I.C. (1982). Plasmid gene organization: naphthalene/salicylate oxidation. Proc. Natl. Acad. Sci. U.S.A., 79, 874-878.
  • Chen, S.-H., Aitken, M.D. (1999). Salicylate Stimulates the Degradation of High- Molecular Weight Polycyclic Aromatic Hydrocarbons by Pseudomonas saccharophila P15. Environ. Sci. Technol., 33, 435-439.
  • Van Aken B., Correa P.A., Schnoor J.L. (2010). Phytoremediation of Polychlorinated Biphenyls: New Trends and Promises. Environ. Sci. Technol., 44, 2767–2776.

Organik Kirleticilerin Bitkilerle Temizlenmesi: Alınma ve Parçalanma Mekanizmaları

Year 2011, Volume: 23 Issue: 3, 123 - 139, 04.12.2011

Abstract

Bitkiler kullanılarak insan aktiviteleri sonucunda kirletilmiş toprak, su ve havanın temizlenmesi şeklinde tanımlanan fitoremediasyon alternatif ve çevre dostu bir teknoloji olarak umut vermektedir. Çevre kirliliğinin bir sonucu olarak canlı yaşam ortamlarında biriken organik kirleticilerin temizlenmesi toksik, mutajen ve karsinojen yapılarından dolayı büyük önem taşımaktadır. Organik kirleticiler kimyasal özelliklerine bağlı olarak rizosferde parçalanabilir ya da bitki tarafından alınarak, bitki hücrelerinde parçalanabilir, konjugasyonla ya vakuolde ya da hücre çeperi alanlarında tutulabilir veya buharlaştırılabilirler. Bu derlemede organik bileşiklerin bitkilere alınma ve bitkisel dokularda parçalanma mekanizmaları anlatılmıştır.

References

  • Kösesakal, T. (2011). Tatlı Su Eğreltisi Azolla filiculoides Lam. Kullanılarak Petrol
  • Hidrokarbonlarının Fitoremediasyonu. Doktora Tezi. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü.
  • Greenberg, B.M., Huang, X.-D., Gerhardt, K., Glick, B.R., Gurska, J., Wang, W., Lampi,
  • M., Khalid, A., Isherwood, D., Chang, P., Wang, H., Wu, S.S., YU, X.-M., Dixon, D.G.,
  • Gerwing, P. (2007). Field and laboratory tests of a multi-process phytoremediation system for
  • decontamination of petroleum and salt impacted soils, In: Proceedings of the Ninth
  • International In Situ and On-Site Remediation Symposium. Gavaskar, A.R. and Silver C.F.,
  • eds., Batelle Press, Columbus, OH.
  • Chappell, J., (1997). Phytoremediation of TCE using Populus, Status Report prepared for
  • the U.S. EPA Technology Innovation Office under a National Network of Environmental
  • Management Studies Fellowship Compiled June-August 1997, Available on-line at:
  • http://www.clu-in.org/download/studentpapers/phytotce.pdf.
  • Pilon-Smits, E. (2005). Phytoremediation, Annu. Rev. Plant Biol., 56, 15-39.
  • Newman, L.A., Strand, S.E., Choe, N., Duffy, J., Ekuan, G., Ruszaj, M., Shurtleff, B.B.,
  • Wilmoth, J., Heilman, P., Gordon, M.P. (1997). Uptake and biotransformation of
  • trichloroethylene by hybrid poplars. Environ. Sci. Technol., 31, 1062-1067.
  • Shang, T.Q., Newman, L.A., Gordon, M.P. (2003). Fate of tricholorethylene in terrestrial
  • plants. In Phytoremediation: Transformation and Control of Contaminants, ed. SC
  • McCutcheon, JL Schnoor, Wiley, New York.
  • Burken, J.G., Schnoor, J.L. (1997). Uptake and metabolism of atrazine by poplar trees. Environ. Sci. Technol., 31, 1399-1406.
  • Hughes, J.B., Shanks, J., Vanderford, M., Lauritzen, J., Bhadra, R. (1997). Transformation of TNT by aquatic plants and plant tissue cultures. Environ. Sci. Technol., 31, 266-271.
  • Aprill, W., Sims, R.C. (1990). Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere, 20, 253-265.
  • Olson, P.E., Reardon, K.F., Pilon-Smits, E.A.H., (2003). Ecology of rhizosphere bioremediation. In Phytoremediation: Transformation and Control of Contaminants, ed. SC McCutcheon, JL Schnoor, Wiley, New York.
  • Harms, H., Bokern, M., Kolb, M., Bock, C. (2003). Transformation of organic contaminants by different plant systems, In Phytoremediation: Transformation and Control of Contaminants, ed. SC McCutcheon, JL Schnoor, Wiley, New York.
  • Trapp, S., McFarlane, C. (1995). Plant Contamination: Modeling and Simulation of Organic Processes, Lewis, Boca Raton, FL.
  • Davis, L.C., Erickson, L.E., Narayanan, N., Zhang, Q. (2003). Modeling and design of phytoremediation, In Phytoremediation:Transformation and Control of Contaminants, ed.SC, McCutcheon, JL Schnoor, Wiley, New York.
  • Susarla, S., Medina, V.F., McCutcheon, S.C. (2002). Phytoremediation: An ecological solution to organic chemical contamination. Ecol. Eng., 18, 647-658.
  • Bowen, G.C., Rovira, A.D. (1991). The rhizosphere—the hidden half of the hidden half. In Plant Roots-The Hidden Half, eds. YWaisel, A Eshel, U Kaffkafi, Marcel Dekker, New York.
  • Macek, T., Macková, M., Kás, J. (2000). Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Adv., 18, 23-34.
  • Kapulnik, Y. (1996). Plant growth promotion by rhizosphere bacteria, In Plant Roots— The Hidden Half, ed. YWaisel, A Eshel, U Kaffkafi, Marcel Dekker, New York.
  • Volkering, F., Breure, A.M., Rulkens, W.H. (1998). Microbiological aspects of surfactant use for biological soil remediation. Biodegrad., 8, 401-417.
  • Siciliano, S.D., Germida, J.J. (1998). Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ. Rev., 6, 65-79.
  • Nichols, T.D., Wolf, D.C., Rogers, H.B., Beyrouty, C.A., Reynolds, C.M. (1997). Rhizosphere microbial populations in contaminated soils. Wat. Air Soil Pollut., 95, 165- 178.
  • Pradhan, S.P., Conrad, J.R., Paterek, J.R., Srivastava, V.J. (1998). Potential of phytoremediation for treatment of PAHs in soil at MGP Sites. Soil and Sediment Contam. Int. J., 7, 467-480.
  • Macková, M., Macek, M., Kucerová, T., Burkhard, J., Tríska, J., Demnerová, K. (1998). Plant tissue cultures in model studies of transformation of polychlorinated biphenyls. Chem. Pap., 52, 599-600.
  • Leigh, M.B., Fletcher, J.S., Fu, X., Schmitz, F.J. (2002). Root turnover: an important source of microbial substances in rhizosphere remediation of recalcitrant contaminants. Environ. Sci. Technol., 36, 1579-1583.
  • Briggs, G.G., Bromilow, R.H., Evans, A.A. (1982). Relationships between lipophilicity and root uptake and translocation of non-ionized chemicals by barley. Pestic. Sci., 13, 405-504.
  • Ross, S.M. (1994). Toxic metals in soil-plant systems, Chichester, Wiley, England.
  • Higuchi, K., Suzuki, K., Nakanishi, H., Yamaguchi, H., Nishizawa, N.K., Mori, S. (1999). Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol., 119, 471-480.
  • Stephan, U.W., Schmidke, I., Stephan, V.W., Scholz, G. (1996). The nicotianamine molecule is made-to-measure for complexation of metal micronutrients in plants. Biometals, 9, 84-90.
  • Küpper, H., Mijovilovich, A., Meyer-Klaucke, W., Kroneck, M.H. (2004). Tissue- and qge-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype) revealed by x- ray absorption spectroscopy. Plant Physiol., 134, 748-757.
  • Cobbett, C.S., Goldsbrough, P.B. (2000). Mechanisms of metal resistance: phytochelatins and metallothioneins, In Phytoremediation of Toxic Metals. Using Plants to Clean up the Environment, ed. I Raskin, BD Ensley, Wiley, New York.
  • Taiz, L., Zeiger, E. (2002). Plant Physiology. Sunderland, MA: Sinauer.
  • Burken, J.G. (2003). Uptake and metabolism of organic compounds: green-liver model. In Phytoremediation: Transformation and Control of Contaminants, ed. SC McCutcheon, JL Schnoor, Wiley, New York.
  • Hale, K.L., McGrath, S., Lombi, E., Stack, S., Terry, N, Pickering, I.J., George, G.N., Pilon-Smits, E.A.H. (2001). Molybdenum sequestration in Brassica: a role for anthocyanins?. Plant Physiology, 126, 1391-1402.
  • Neuefeind, T., Reinemer, P., Bieseler, B. (1997). Plant glutathione S-transferases and herbicide detoxification. Biologic. Chem., 378, 199-205.
  • Sandermann, H. (1994). Higher plant metabolism of xenobiotics: the “green liver” concept. Pharmacogenetics, 4, 225-241.
  • Marrs, K.A., Alfenito, M.R., Lloyd, A.M., Walbot, V.A. (1995). Glutathione s- transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nat., 375, 397-400.
  • Wolf, A.E., Dietz, K.J., Schroder, P. (1996). Degradation of glutathione s-conjugates by a carboxypeptidase in the plant vacuole. FEBS Letters, 384, 31-34.
  • Coleman, J.O.D., Blake-Kalff, M.M.A., Davies, T.G.E. (1997). Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci., 2, 144-51.
  • Abhilash, P.C., Jamil, S., Singh, N. (2009). Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol. Adv., 27, 474- 488.
  • McCutcheon, S.C., Medina, V.F., Larson, S.L. (2003). Proof of phytoremediation for explosives in water and soil, In Phytoremediation: Transformation and Control of Contaminants, ed. SC McCutcheon, JL Schnoor, Wiley, New York.
  • Marrs, K.A. (1996). The functions and regulation of glutathione s-transferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 47, 127-158.
  • McCutcheon, S.C., Schnoor, J.L. (2003). Overview of Phytotransformation and Control of Wastes, Phytoremediation: Transformation and Control of Contaminants, S. McCutcheon and J. Schnoor (eds.), John Wiley & Sons, Inc., Hoboken, NJ.
  • Barac, T., Taghavi, S., Borremans, B., Provoost, A., Oeyen, L., Colpaert, J.V., Vangronsveld, J., van der Lelie, D. (2004). Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat. Biotechnol., 22 (5), 583-588.
  • McGuinness, M., Dowling, D. (2009). Plant-Associated Bacterial Degradation of Toxic Organic Compounds in Soil. Int. J. Environ. Res. Public. Health, 6, 2226-2247.
  • Kvesitadze, E., Sadunishvili, T., Kvesitadze, G. (2009). Mechanisms of Organic Contaminants Uptake and Degradation in Plants. World Acad. Sci. Eng. Technol., 55, 458-468.
  • Wolfe, N.L., Hoehamer, C.F. (2003). Enzymes used by plants and microorganisms to detoxify organic compounds, In Phytoremediation: Transformation and Control of Contaminants, ed. SC McCutcheon, JL Schnoor, Wiley, New York.
  • Gerhardt, K.E., Huang, X.-D., Glick, B.R., Greenberg, B.M. (2009). Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Sci., 176, 20-30.
  • Campanella, B., Paul, R. (2000). Presence, in the rhizosphere and leaf extracts of zucchini (Cucurbita pepo L.) and melon (Cucumis melo L.) of molecules capable of increasing the apparent aqueous solubility of hydrophobic pollutants. Int. J. Phytoremediat., 2, 145-158.
  • Schwitzguébel, J.-P. (2001). Hype or Hope: The Potential of Phytoremediation as an Emerging Green Technology. Remediat., 11 (4) 63-78.
  • Andrew, C.S., David E.C., Ian P.T. (2003). Secondary plant metabolites in phytoremediation and biotransformation. Trends in Biotechnol. 21(3), 123-130.
  • Tront, J.M. (2004). Plant Activity and Organic Contaminant Processing by Aquatic Plants, Thesis (PhD), School of Civil and Environmental Engineering, Georgia Institute of Technology.
  • Van Aken, B. (2008). Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends in Biotechnol., 26 (5), 225-227.
  • Hadacek, F. (2002). Secondary metabolites as plant traits: current assessment and future perspectives. CRC Crit. Rev. Plant Sci., 21, 273-322.
  • Dixon, R. (2001). Natural products and plant disease resistance. Nat., 411, 843-847.
  • Miya, R.K., Firestone, M.K. (2001). Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris. J. Environ. Qual., 30, 1911-1918.
  • Isidorov, V., Jdanova, M. (2002). Volatile organic compounds from leaves litter. Chemosphere, 48, 975-979.
  • Meyer, D.G., Capieau, K., Audenaert, K., Buchala, A., Métraux, J.P., Höfte, M. (1999). Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol. Plant Microbe Interact., 12, 450-458.
  • Yen, K-M., Gunsalus, I.C. (1982). Plasmid gene organization: naphthalene/salicylate oxidation. Proc. Natl. Acad. Sci. U.S.A., 79, 874-878.
  • Chen, S.-H., Aitken, M.D. (1999). Salicylate Stimulates the Degradation of High- Molecular Weight Polycyclic Aromatic Hydrocarbons by Pseudomonas saccharophila P15. Environ. Sci. Technol., 33, 435-439.
  • Van Aken B., Correa P.A., Schnoor J.L. (2010). Phytoremediation of Polychlorinated Biphenyls: New Trends and Promises. Environ. Sci. Technol., 44, 2767–2776.
There are 72 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Taylan Kösesakal

Publication Date December 4, 2011
Published in Issue Year 2011 Volume: 23 Issue: 3

Cite

APA Kösesakal, T. (2011). Organik Kirleticilerin Bitkilerle Temizlenmesi: Alınma ve Parçalanma Mekanizmaları. Marmara Fen Bilimleri Dergisi, 23(3), 123-139. https://doi.org/10.7240/mufbed.13930
AMA Kösesakal T. Organik Kirleticilerin Bitkilerle Temizlenmesi: Alınma ve Parçalanma Mekanizmaları. MFBD. December 2011;23(3):123-139. doi:10.7240/mufbed.13930
Chicago Kösesakal, Taylan. “Organik Kirleticilerin Bitkilerle Temizlenmesi: Alınma Ve Parçalanma Mekanizmaları”. Marmara Fen Bilimleri Dergisi 23, no. 3 (December 2011): 123-39. https://doi.org/10.7240/mufbed.13930.
EndNote Kösesakal T (December 1, 2011) Organik Kirleticilerin Bitkilerle Temizlenmesi: Alınma ve Parçalanma Mekanizmaları. Marmara Fen Bilimleri Dergisi 23 3 123–139.
IEEE T. Kösesakal, “Organik Kirleticilerin Bitkilerle Temizlenmesi: Alınma ve Parçalanma Mekanizmaları”, MFBD, vol. 23, no. 3, pp. 123–139, 2011, doi: 10.7240/mufbed.13930.
ISNAD Kösesakal, Taylan. “Organik Kirleticilerin Bitkilerle Temizlenmesi: Alınma Ve Parçalanma Mekanizmaları”. Marmara Fen Bilimleri Dergisi 23/3 (December 2011), 123-139. https://doi.org/10.7240/mufbed.13930.
JAMA Kösesakal T. Organik Kirleticilerin Bitkilerle Temizlenmesi: Alınma ve Parçalanma Mekanizmaları. MFBD. 2011;23:123–139.
MLA Kösesakal, Taylan. “Organik Kirleticilerin Bitkilerle Temizlenmesi: Alınma Ve Parçalanma Mekanizmaları”. Marmara Fen Bilimleri Dergisi, vol. 23, no. 3, 2011, pp. 123-39, doi:10.7240/mufbed.13930.
Vancouver Kösesakal T. Organik Kirleticilerin Bitkilerle Temizlenmesi: Alınma ve Parçalanma Mekanizmaları. MFBD. 2011;23(3):123-39.

Marmara Fen Bilimleri Dergisi

e-ISSN : 2146-5150

 

 

MU Fen Bilimleri Enstitüsü

Göztepe Yerleşkesi, 34722 Kadıköy, İstanbul
E-posta: fbedergi@marmara.edu.tr