Review
BibTex RIS Cite

Elektroeğrilmiş Nanoliflerin İlaç Taşıyıcı Sistem Olarak ve Doku Mühendisliğinde Kullanımı

Year 2017, Volume: 21 Issue: 3, 425 - 435, 18.04.2017
https://doi.org/10.12991/marupj.306787

Abstract

Nanofibers which have a longer length than its diameter
are widely used in many areas i.e. drug delivery systems and
tissue engineering because of their convenient surface area to
volume ratio. Electrospinning is the most common method for
processing nanofibers. The nanofibers that are processed by
electrospinning are called electrospun nanofibers. During the
process, physicochemical properties of electrospun nanofibers
can be affected by different parameters including applied voltage,
solution flow rate, distance between capillary and collector,
polymer physicochemical properties. Drug release properties
of electrospun nanofibers are determined by diffusion and
polymer degradation. Additionally, nanofibers’ types i.e. matrix
types or reservoir types affect drug release properties. Since the
physical properties of nanofibers allow researchers to produce
an artificial extracellular matrix to mimic microenvironments
of tissues, they are used in tissue engineering for regeneration
and production of a new tissue or an organ. Biosimilar
nanofibers, therefore, can be obtained by modifying surfaces
of nanofibers. Findings of our study suggest that because of
their biosimilar character and providing intended drug release
profile, nanofibers have a promising potential in the future of
tissue engineering research.

References

  • 1. Ramakrishna S, Fujihara K, Teo W-E, Lim T-C, Ma Z. An Introduction to Electrospinning and Nanofibers. World Scientific Co, Singapore. 2005. 2. Goddard WAIII, Brenner D, Lyshevski SE, Lafrate GJ. Handbook of Nanoscience, Engineering, and Technology, Second Edition. Boca Raton, FL: CRC press. 2007. 3. Qufu Wei, Dan Tao YX. Functional Nanofibers and their Applications. Editor: Qufu W. Woodhead Publishing, Philadelphia. 2012. 4. Ko FK, Wan Y. Introduction to Nanofiber Materials. Cambridge University Press, Cambridge. 2014. 5. Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 2014;185:12–21. 6. Travis J. Sill HA von R. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 2008;29:1989– 2006. 7. Yoo HS, Kim TG, Park TG. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 2009; 61:1033–42. 8. Tort S, Acarturk F. Wound healing and electrospun wound dressings: Review. Turkiye Klin J Pharm Sci 2015;4:68–78. 9. Zhou J, O’Keeffe M, Liao G, Zhao F, Terhorst C, Xu B. Design and synthesis of nanofibers of self-assembled de novo glycoconjugates towards mucosal lining restoration and antiinflammatory drug delivery. Tetrahedron 2016;72:6078–83. 10. Goddard WAIII, Brenner D, Lyshevski SE, Lafrate GJ. Handbook of Nanoscience, Engineering, and Technology, Third Edition. Boca Raton, FL: CRC press. 2012. 11. Zhou T, Zhu B, Chen F, Liu Y, Ren N, Tang J, Ma X, Su Y, Zhu X. Micro-/nanofibers prepared via co-assembly of paclitaxel and dextran. Carbohydr Polym 2017;157:613–9. 12. Kang J, Gi H, Choe R, Yun SI. Fabrication and characterization of poly(3-hydroxybutyrate) gels using non-solvent-induced phase separation. Polym (United Kingdom) 2016;104:61–71. 13. Barnes CP, Scott AS, Sell SA, Boland ED, Simpson DG, Bowlin GL. Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 2007;59:1413–33. 14. Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotechnol Adv 2010;28:325–47. 15. Deitzel J, Kleinmeyer J, Harris D, Beck Tan N. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer (Guildf) 2001;42:261–72. 16. Reneker DH and Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996;7:216–23. 17. Zhang C, Yuan X, Wu L, Han Y, Sheng J. Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polym J 2005;41:423–32. 18. Demir M, Yilgor I, Yilgor E, Erman B. Electrospinning of polyurethane fibers. Polymer (Guildf) 2002;43:3303–9. 19. Megelski S, Stephens JS, Chase DB, Rabolt JF. Micro- and nanostructured surface morphology on electrospun polymer fibers. Am Chem Soc 2002;35:8456-66. 20. Haghi AK, Akbari M. Trends in electrospinning of natural nanofibers. Phys status solidi 2007;204:1830–4. 21. Taylor G. Electrically Driven Jets. Proc R Soc London A Math Phys Eng Sci 1969;313. 22. Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer (Guildf) 2002;43:4403–12. 23. Kim KH, Jeong L, Park HN, Shin SY, Park WH, Lee SC, Kim TL, Park YJ, Seol YJ, Lee YM, Ku Y, Rhyu IC. Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotechnol 2005;120:327–39. 24. Wannatong L, Sirivat A, Supaphol P. Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. Polym Int 2004;53:1851–9. 25. Yuan X, Zhang Y, Dong C, Sheng J. Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polym Int 2004;53:1704–10. 26. Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH. Characterization of gelatin nanofiber prepared from gelatin– formic acid solution. Polymer (Guildf) 2005;46:5094–102. 27. Geng X, Kwon OH, Jang J. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 2005;26:5427-32. 28. Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electrostat 1995;35:151–60. 29. Zeng J, Haoqing H, Schaper A, Wendorff JH, Greiner A. Poly-L-lactide nanofibers by electrospinning – Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. e-Polymers 2003;3:102–10. 30. Tan SH, Inai R, Kotaki M, Ramakrishna S. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer (Guildf) 2005;46:6128–34. 31. Hohman MM, Shin M, Rutledge G, Brenner MP. Electrospinning and electrically forced jets. II. Applications. Physics of Fluids 2001;3:2221-36. 32. Wang B, Li H, Yao Q, Zhang Y, Zhu X, Xia T, Wang J, Li G, Li X, Ni S. Local in vitro delivery of rapamycin from electrospun PEO/PDLLA nanofibers for glioblastoma treatment. Biomed Pharmacother 2016;83:1345–52. 33. Zhang Z, Liu S, Qi Y, Zhou D, Xie Z, Jing X, Chen X, Huang Y. Time-programmed DCA and oxaliplatin release by multilayered nanofiber mats in prevention of local cancer recurrence following surgery. J Control Release 2016;235:125– 33. 34. Sun X, Li K, Chen S, Yao B, Zhou Y, Cui S, Hu J, Liu Y. Rationally designed particle preloading method to improve protein delivery performance of electrospun polyester nanofibers. Int J Pharm 2016;512:204–12. 35. Huang LY, Branford-White C, Shen XX, Yu DG, Zhu LM. Time-engineeringed biphasic drug release by electrospun nanofiber meshes. Int J Pharm 2012;436:88–96. 36. Illangakoon UE, Nazir T, Williams GR, Chatterton NP. Mebeverine-loaded electrospun nanofibers: Physicochemical characterization and dissolution studies. J Pharm Sci 2014;103:283–92. 37. Akhgari A, Heshmati Z, Afrasiabi Garekani H, Sadeghi F, Sabbagh A, Sharif Makhmalzadeh B-S, Nokhodchi A. Indomethacin electrospun nanofibers for colonic drug delivery: In vitro dissolution studies. Colloids Surfaces B Biointerfaces 2017;152:29–35. 38. Vargas E.A-T, do Vale Baracho NC, de Brito J, de Queiroz A.A.A. Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications. Acta Biomater 2010;6:1069– 78. 39. Hayati I, Bailey AI, Tadros TF. Investigations into the Mechanisms of Electrohydrodynamic Spraying of Liquids I. Effect of electric field and the environment on pendant drops and factors affecting the formation of stable jets and atomization. J Colloid Interface Sci 1987 1;117:205-21. 40. Akhgari A, Heshmati Z, Sharif Makhmalzadeh B. Indomethacin electrospun nanofibers for colonic drug delivery: preparation and characterization. Adv Pharm Bull 2013;3:85–90. 41. Jahangiri A, Davaran S, Fayyazi B, Tanhaei A, Payab S, Adibkia K. Application of electrospraying as a one-step method for the fabrication of triamcinolone acetonide-PLGA nanofibers and nanobeads. Colloids Surfaces B Biointerfaces 2014;123:219– 24. 42. Xu X, Chen X, Ma PA, Wang X, Jing X. The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning. Eur J Pharm Biopharm 2008;70:165–70. 43. Maretschek S, Greiner A, Kissel T. Electrospun biodegradable nanofiber nonwovens for controlled release of proteins. J Control Release 2008;127:180–7. 44. Okuda T, Tominaga K, Kidoaki S. Time-programmed dual release formulation by multilayered drug-loaded nanofiber meshes. J Control Release 2010;143:258–64. 45. Ku SH, Park CB. Human endothelial cell growth on musselinspired nanofiber scaffold for vascular tissue engineering. Biomaterials 2010;31:9431–7. 46. Zhu Y, Leong MF, Ong WF, Chan-Park MB, Chian KS. Esophageal epithelium regeneration on fibronectin grafted poly(l-lactide-co-caprolactone) (PLLC) nanofiber scaffold. Biomaterials 2007;28:861–8. 47. Lee CH, Shin HJ, Cho IH, Kang Y-M, Kim IA, Park K-D, Shin J-W. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 2005;26:1261–70. 48. Jang YS, Jang CH, Cho YB, Kim M, Kim GH. Tracheal regeneration using polycaprolactone/collagen-nanofiber coated with umbilical cord serum after partial resection. Int J Pediatr Otorhinolaryngol 2014;78:2237–43. 49. Chen R, Huang C, Ke Q, He C, Wang H, Mo X. Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications. Colloids Surf B Biointerfaces 2010;79:315–25. 50. Şenel Ayaz HG, Perets A, Ayaz H, Gilroy KD, Govindaraj M, Brookstein D, Lelkes PI. Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering. Biomaterials 2014;35:8540–52. 51. Chua K-N, Lim W-S, Zhang P, Lu H, Wen J, Ramakrishna S, Leong KW, Mao HQ. Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold. Biomaterials 2005;26:2537–47. 52. He X, Cheng L, Zhang X, Xiao Q, Zhang W, Lu C. Tissue engineering scaffolds electrospun from cotton cellulose. Carbohydr Polym 2015;115:485–93. 53. Karavasili C, Bouropoulos N, Kontopoulou I, Smith A, van der Merwe SM, Rehman IUR, Ahmad Z, Fatouros DG. Preparation and characterization of multiactive electrospun fibers: Poly-ɛcarpolactone fibers loaded with hydroxyapatite and selected NSAIDs. J Biomed Mater Res Part A 2014;102:2583–9. 54. Manning CN, Schwartz AG, Liu W, Xie J, Havlioglu N, Sakiyama-Elbert SE, Silva MJ, Xia Y, Gelberman RH, Thomopoulos S. Controlled delivery of mesenchymal stem cells and growth factors using a nanofiber scaffold for tendon repair. Acta Biomater 2013;9:6905–14. 55. Kolambkar YM, Dupont KM, Boerckel JD, Huebsch N, Mooney DJ, Hutmacher DW, Guldberg RE. An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 2011;32:65–74. 56. Saravanabhavan SS, Dharmalingam S. Fabrication of polysulphone/hydroxyapatite nanofiber composite implant and evaluation of their in vitro bioactivity and biocompatibility towards the post-surgical therapy of gastric cancer. Chem Eng J 2013;234:380–8. 57. Xue J, He M, Liu H, Niu Y, Crawford A, Coates PD, Chen D, Shi R, Zhang L. Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes. Biomaterials 2014;35:9395– 405. 58. Ionescu LC, Lee GC, Sennett BJ, Burdick JA, Mauck RL. An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering. Biomaterials 2010;31:4113–20. 59. Zhu L, Liu X, Du L, Jin Y. Preparation of asiaticoside-loaded coaxially electrospinning nanofibers and their effect on deep partial-thickness burn injury. Biomed Pharmacother 2016;83:33–40. 60. Tort S, Acarturk F. Preparation and characterization of electrospun nanofibers containing glutamine. Carbohydr Polym 2016;152:802–14. 61. Rediguieri CF, Sassonia RC, Dua K, Kikuchi IS, de Jesus Andreoli Pinto T. Impact of sterilization methods on electrospun scaffolds for tissue engineering. Eur Polym J 2016;82:181–95. 62. Rainer A, Centola M, Spadaccio C, Gherardi G, Genovese JA, Licoccia S, Trombetta M. Comparative study of different techniques for the sterilization of poly-L-lactide electrospun microfibers: Effectiveness vs. material degradation. Int J Artif Organs 2010;33:76–85. 63. Holy CE, Cheng C, Davies JE, Shoichet MS. Optimizing the sterilization of PLGA scaffolds for use in tissue engineering. Biomaterials 2001;22:25–31.

Elektroeğrilmiş Nanoliflerin İlaç Taşıyıcı Sistem Olarak ve Doku Mühendisliğinde Kullanımı

Year 2017, Volume: 21 Issue: 3, 425 - 435, 18.04.2017
https://doi.org/10.12991/marupj.306787

Abstract

Uzunlukları çaplarına kıyasla oldukça fazla olan nanolifler,

sahip oldukları yüksek yüzey/hacim oranı ile ilaç taşıyıcı

sistemler ve doku mühendisliği de dahil olmak üzere birçok

alanda kullanım potansiyeline sahiptir. Farklı yöntemlerle

üretilme imkanı olan nanoliflerin en cazip üretim metodu

elektroeğirme yöntemidir. Bu yöntemle üretilen nanoliflerin

fizikokimyasal özellikleri; uygulanan voltaj, polimer çözeltisinin

akış hızı, kapiller ve kolektör arasındaki mesafe, polimerin

fizikokimyasal özellikleri ve kullanılan çözücü gibi birçok

parametreden etkilenmektedir. Elektroeğrilmiş nanoliflerin

etkin madde salım özellikleri, etkin maddenin difüzyonu ve

taşıyıcı polimerin degredasyonu ile belirlenmektedir. Ayrıca

nanoliflerin etkin madde salım özelliklerini lifin matriks veya

depo yapısında olması, yüzeyinde aktif bileşenlerin bulunması

etkilemektedir. Sahip olduğu fiziksel özellikler nedeniyle

nanolifler, hücrelerin fizyolojik çevresini taklit etmek amacıyla

yapay ekstraselüler matriksler geliştirilerek doku ve organların

rejenerasyonunu ya da üretimini hedefleyen doku mühendisliği

alanında kullanımı için oldukça elverişlidir. Bu amaçla

nanoliflerin yüzey özellikleri değiştirilerek biyobenzer yapılar

elde edilebilmektedir. Nanolifler, etkin maddenin hedeflenen

salım profilini sağlaması ve biyobenzer özellik kazanarak doku

mühendisliğinde kullanımına imkan vermesi ile gelecek vaat

eden sistemlerdir.

References

  • 1. Ramakrishna S, Fujihara K, Teo W-E, Lim T-C, Ma Z. An Introduction to Electrospinning and Nanofibers. World Scientific Co, Singapore. 2005. 2. Goddard WAIII, Brenner D, Lyshevski SE, Lafrate GJ. Handbook of Nanoscience, Engineering, and Technology, Second Edition. Boca Raton, FL: CRC press. 2007. 3. Qufu Wei, Dan Tao YX. Functional Nanofibers and their Applications. Editor: Qufu W. Woodhead Publishing, Philadelphia. 2012. 4. Ko FK, Wan Y. Introduction to Nanofiber Materials. Cambridge University Press, Cambridge. 2014. 5. Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 2014;185:12–21. 6. Travis J. Sill HA von R. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 2008;29:1989– 2006. 7. Yoo HS, Kim TG, Park TG. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 2009; 61:1033–42. 8. Tort S, Acarturk F. Wound healing and electrospun wound dressings: Review. Turkiye Klin J Pharm Sci 2015;4:68–78. 9. Zhou J, O’Keeffe M, Liao G, Zhao F, Terhorst C, Xu B. Design and synthesis of nanofibers of self-assembled de novo glycoconjugates towards mucosal lining restoration and antiinflammatory drug delivery. Tetrahedron 2016;72:6078–83. 10. Goddard WAIII, Brenner D, Lyshevski SE, Lafrate GJ. Handbook of Nanoscience, Engineering, and Technology, Third Edition. Boca Raton, FL: CRC press. 2012. 11. Zhou T, Zhu B, Chen F, Liu Y, Ren N, Tang J, Ma X, Su Y, Zhu X. Micro-/nanofibers prepared via co-assembly of paclitaxel and dextran. Carbohydr Polym 2017;157:613–9. 12. Kang J, Gi H, Choe R, Yun SI. Fabrication and characterization of poly(3-hydroxybutyrate) gels using non-solvent-induced phase separation. Polym (United Kingdom) 2016;104:61–71. 13. Barnes CP, Scott AS, Sell SA, Boland ED, Simpson DG, Bowlin GL. Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 2007;59:1413–33. 14. Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotechnol Adv 2010;28:325–47. 15. Deitzel J, Kleinmeyer J, Harris D, Beck Tan N. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer (Guildf) 2001;42:261–72. 16. Reneker DH and Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996;7:216–23. 17. Zhang C, Yuan X, Wu L, Han Y, Sheng J. Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polym J 2005;41:423–32. 18. Demir M, Yilgor I, Yilgor E, Erman B. Electrospinning of polyurethane fibers. Polymer (Guildf) 2002;43:3303–9. 19. Megelski S, Stephens JS, Chase DB, Rabolt JF. Micro- and nanostructured surface morphology on electrospun polymer fibers. Am Chem Soc 2002;35:8456-66. 20. Haghi AK, Akbari M. Trends in electrospinning of natural nanofibers. Phys status solidi 2007;204:1830–4. 21. Taylor G. Electrically Driven Jets. Proc R Soc London A Math Phys Eng Sci 1969;313. 22. Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer (Guildf) 2002;43:4403–12. 23. Kim KH, Jeong L, Park HN, Shin SY, Park WH, Lee SC, Kim TL, Park YJ, Seol YJ, Lee YM, Ku Y, Rhyu IC. Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotechnol 2005;120:327–39. 24. Wannatong L, Sirivat A, Supaphol P. Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. Polym Int 2004;53:1851–9. 25. Yuan X, Zhang Y, Dong C, Sheng J. Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polym Int 2004;53:1704–10. 26. Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH. Characterization of gelatin nanofiber prepared from gelatin– formic acid solution. Polymer (Guildf) 2005;46:5094–102. 27. Geng X, Kwon OH, Jang J. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 2005;26:5427-32. 28. Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electrostat 1995;35:151–60. 29. Zeng J, Haoqing H, Schaper A, Wendorff JH, Greiner A. Poly-L-lactide nanofibers by electrospinning – Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. e-Polymers 2003;3:102–10. 30. Tan SH, Inai R, Kotaki M, Ramakrishna S. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer (Guildf) 2005;46:6128–34. 31. Hohman MM, Shin M, Rutledge G, Brenner MP. Electrospinning and electrically forced jets. II. Applications. Physics of Fluids 2001;3:2221-36. 32. Wang B, Li H, Yao Q, Zhang Y, Zhu X, Xia T, Wang J, Li G, Li X, Ni S. Local in vitro delivery of rapamycin from electrospun PEO/PDLLA nanofibers for glioblastoma treatment. Biomed Pharmacother 2016;83:1345–52. 33. Zhang Z, Liu S, Qi Y, Zhou D, Xie Z, Jing X, Chen X, Huang Y. Time-programmed DCA and oxaliplatin release by multilayered nanofiber mats in prevention of local cancer recurrence following surgery. J Control Release 2016;235:125– 33. 34. Sun X, Li K, Chen S, Yao B, Zhou Y, Cui S, Hu J, Liu Y. Rationally designed particle preloading method to improve protein delivery performance of electrospun polyester nanofibers. Int J Pharm 2016;512:204–12. 35. Huang LY, Branford-White C, Shen XX, Yu DG, Zhu LM. Time-engineeringed biphasic drug release by electrospun nanofiber meshes. Int J Pharm 2012;436:88–96. 36. Illangakoon UE, Nazir T, Williams GR, Chatterton NP. Mebeverine-loaded electrospun nanofibers: Physicochemical characterization and dissolution studies. J Pharm Sci 2014;103:283–92. 37. Akhgari A, Heshmati Z, Afrasiabi Garekani H, Sadeghi F, Sabbagh A, Sharif Makhmalzadeh B-S, Nokhodchi A. Indomethacin electrospun nanofibers for colonic drug delivery: In vitro dissolution studies. Colloids Surfaces B Biointerfaces 2017;152:29–35. 38. Vargas E.A-T, do Vale Baracho NC, de Brito J, de Queiroz A.A.A. Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications. Acta Biomater 2010;6:1069– 78. 39. Hayati I, Bailey AI, Tadros TF. Investigations into the Mechanisms of Electrohydrodynamic Spraying of Liquids I. Effect of electric field and the environment on pendant drops and factors affecting the formation of stable jets and atomization. J Colloid Interface Sci 1987 1;117:205-21. 40. Akhgari A, Heshmati Z, Sharif Makhmalzadeh B. Indomethacin electrospun nanofibers for colonic drug delivery: preparation and characterization. Adv Pharm Bull 2013;3:85–90. 41. Jahangiri A, Davaran S, Fayyazi B, Tanhaei A, Payab S, Adibkia K. Application of electrospraying as a one-step method for the fabrication of triamcinolone acetonide-PLGA nanofibers and nanobeads. Colloids Surfaces B Biointerfaces 2014;123:219– 24. 42. Xu X, Chen X, Ma PA, Wang X, Jing X. The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning. Eur J Pharm Biopharm 2008;70:165–70. 43. Maretschek S, Greiner A, Kissel T. Electrospun biodegradable nanofiber nonwovens for controlled release of proteins. J Control Release 2008;127:180–7. 44. Okuda T, Tominaga K, Kidoaki S. Time-programmed dual release formulation by multilayered drug-loaded nanofiber meshes. J Control Release 2010;143:258–64. 45. Ku SH, Park CB. Human endothelial cell growth on musselinspired nanofiber scaffold for vascular tissue engineering. Biomaterials 2010;31:9431–7. 46. Zhu Y, Leong MF, Ong WF, Chan-Park MB, Chian KS. Esophageal epithelium regeneration on fibronectin grafted poly(l-lactide-co-caprolactone) (PLLC) nanofiber scaffold. Biomaterials 2007;28:861–8. 47. Lee CH, Shin HJ, Cho IH, Kang Y-M, Kim IA, Park K-D, Shin J-W. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 2005;26:1261–70. 48. Jang YS, Jang CH, Cho YB, Kim M, Kim GH. Tracheal regeneration using polycaprolactone/collagen-nanofiber coated with umbilical cord serum after partial resection. Int J Pediatr Otorhinolaryngol 2014;78:2237–43. 49. Chen R, Huang C, Ke Q, He C, Wang H, Mo X. Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications. Colloids Surf B Biointerfaces 2010;79:315–25. 50. Şenel Ayaz HG, Perets A, Ayaz H, Gilroy KD, Govindaraj M, Brookstein D, Lelkes PI. Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering. Biomaterials 2014;35:8540–52. 51. Chua K-N, Lim W-S, Zhang P, Lu H, Wen J, Ramakrishna S, Leong KW, Mao HQ. Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold. Biomaterials 2005;26:2537–47. 52. He X, Cheng L, Zhang X, Xiao Q, Zhang W, Lu C. Tissue engineering scaffolds electrospun from cotton cellulose. Carbohydr Polym 2015;115:485–93. 53. Karavasili C, Bouropoulos N, Kontopoulou I, Smith A, van der Merwe SM, Rehman IUR, Ahmad Z, Fatouros DG. Preparation and characterization of multiactive electrospun fibers: Poly-ɛcarpolactone fibers loaded with hydroxyapatite and selected NSAIDs. J Biomed Mater Res Part A 2014;102:2583–9. 54. Manning CN, Schwartz AG, Liu W, Xie J, Havlioglu N, Sakiyama-Elbert SE, Silva MJ, Xia Y, Gelberman RH, Thomopoulos S. Controlled delivery of mesenchymal stem cells and growth factors using a nanofiber scaffold for tendon repair. Acta Biomater 2013;9:6905–14. 55. Kolambkar YM, Dupont KM, Boerckel JD, Huebsch N, Mooney DJ, Hutmacher DW, Guldberg RE. An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 2011;32:65–74. 56. Saravanabhavan SS, Dharmalingam S. Fabrication of polysulphone/hydroxyapatite nanofiber composite implant and evaluation of their in vitro bioactivity and biocompatibility towards the post-surgical therapy of gastric cancer. Chem Eng J 2013;234:380–8. 57. Xue J, He M, Liu H, Niu Y, Crawford A, Coates PD, Chen D, Shi R, Zhang L. Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes. Biomaterials 2014;35:9395– 405. 58. Ionescu LC, Lee GC, Sennett BJ, Burdick JA, Mauck RL. An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering. Biomaterials 2010;31:4113–20. 59. Zhu L, Liu X, Du L, Jin Y. Preparation of asiaticoside-loaded coaxially electrospinning nanofibers and their effect on deep partial-thickness burn injury. Biomed Pharmacother 2016;83:33–40. 60. Tort S, Acarturk F. Preparation and characterization of electrospun nanofibers containing glutamine. Carbohydr Polym 2016;152:802–14. 61. Rediguieri CF, Sassonia RC, Dua K, Kikuchi IS, de Jesus Andreoli Pinto T. Impact of sterilization methods on electrospun scaffolds for tissue engineering. Eur Polym J 2016;82:181–95. 62. Rainer A, Centola M, Spadaccio C, Gherardi G, Genovese JA, Licoccia S, Trombetta M. Comparative study of different techniques for the sterilization of poly-L-lactide electrospun microfibers: Effectiveness vs. material degradation. Int J Artif Organs 2010;33:76–85. 63. Holy CE, Cheng C, Davies JE, Shoichet MS. Optimizing the sterilization of PLGA scaffolds for use in tissue engineering. Biomaterials 2001;22:25–31.
There are 1 citations in total.

Details

Subjects Health Care Administration
Journal Section Articles
Authors

Bürde Süheyla Sunar This is me

Canan Hasçiçek

Publication Date April 18, 2017
Published in Issue Year 2017 Volume: 21 Issue: 3

Cite

APA Sunar, B. S., & Hasçiçek, C. (2017). Elektroeğrilmiş Nanoliflerin İlaç Taşıyıcı Sistem Olarak ve Doku Mühendisliğinde Kullanımı. Marmara Pharmaceutical Journal, 21(3), 425-435. https://doi.org/10.12991/marupj.306787
AMA Sunar BS, Hasçiçek C. Elektroeğrilmiş Nanoliflerin İlaç Taşıyıcı Sistem Olarak ve Doku Mühendisliğinde Kullanımı. Marmara Pharm J. June 2017;21(3):425-435. doi:10.12991/marupj.306787
Chicago Sunar, Bürde Süheyla, and Canan Hasçiçek. “Elektroeğrilmiş Nanoliflerin İlaç Taşıyıcı Sistem Olarak Ve Doku Mühendisliğinde Kullanımı”. Marmara Pharmaceutical Journal 21, no. 3 (June 2017): 425-35. https://doi.org/10.12991/marupj.306787.
EndNote Sunar BS, Hasçiçek C (June 1, 2017) Elektroeğrilmiş Nanoliflerin İlaç Taşıyıcı Sistem Olarak ve Doku Mühendisliğinde Kullanımı. Marmara Pharmaceutical Journal 21 3 425–435.
IEEE B. S. Sunar and C. Hasçiçek, “Elektroeğrilmiş Nanoliflerin İlaç Taşıyıcı Sistem Olarak ve Doku Mühendisliğinde Kullanımı”, Marmara Pharm J, vol. 21, no. 3, pp. 425–435, 2017, doi: 10.12991/marupj.306787.
ISNAD Sunar, Bürde Süheyla - Hasçiçek, Canan. “Elektroeğrilmiş Nanoliflerin İlaç Taşıyıcı Sistem Olarak Ve Doku Mühendisliğinde Kullanımı”. Marmara Pharmaceutical Journal 21/3 (June 2017), 425-435. https://doi.org/10.12991/marupj.306787.
JAMA Sunar BS, Hasçiçek C. Elektroeğrilmiş Nanoliflerin İlaç Taşıyıcı Sistem Olarak ve Doku Mühendisliğinde Kullanımı. Marmara Pharm J. 2017;21:425–435.
MLA Sunar, Bürde Süheyla and Canan Hasçiçek. “Elektroeğrilmiş Nanoliflerin İlaç Taşıyıcı Sistem Olarak Ve Doku Mühendisliğinde Kullanımı”. Marmara Pharmaceutical Journal, vol. 21, no. 3, 2017, pp. 425-3, doi:10.12991/marupj.306787.
Vancouver Sunar BS, Hasçiçek C. Elektroeğrilmiş Nanoliflerin İlaç Taşıyıcı Sistem Olarak ve Doku Mühendisliğinde Kullanımı. Marmara Pharm J. 2017;21(3):425-3.