[1] Adámek, J., Herrlich, H. and Strecker, G. E., Abstract and Concrete Categories, Wiley, New York, 1990.
[2] Baran, M., Separation properties. Indian J. Pure Appl. Math. 23 (1992), 333-341.
[3] Baran, M., Stacks and filters. Turkish J. of Math.-Do˘ga. 16 (1992), 95-108.
[4] Baran, M., The notion of closedness in topological categories. Comment. Math. Univ. Carolinae. 34 (1993), 383-395.
[5] Baran, M., Generalized Local Separation Properties. Indian J. Pure Appl. Math. 25 (1994), 615-620.
[6] Baran, M., A notion of compactness in topological categories. Publ. Math. Debrecen. 50 (3-4), 221-234, 1997.
[7] Baran, M., T3 and T4-objects in topological categories. Indian J. Pure Appl. Math. 29 (1), 59-69, 1998.
[8] Baran, M., Closure operators in convergence spaces. Acta Math. Hungar. 87 (2000), 33-45.
[9] Baran, M., Compactness, perfectness, separation, minimality and closedness with respect to closure operators.
Applied Categorical Structures. 10 (2002), 403-415.
[10] Baran, M., PreT2-objects in topological categories. Applied Categorical Structures. 17 (2009), 591-602, DOI
10.1007/s10485-008-9161-4.
[11] Baran, M. and Altındi¸s, H., T2-objects in topological categories. Acta Math. Hungar. 71 (1996), no. 1-2, 41-48.
[12] Baran, M. and Kula, M., A note on separation and compactness in categories of convergence spaces. Proceedings
of the International Conference on Applicable General Topology (Ankara, 2001). Appl. Gen. Topol. 4 (1), 1-13, 2003.
[13] Bentley, H. L., Herrlich, H. and Lowen-Colebunders, E., Convergence. J. Pure Appl. Algebra. 68 (1990), no 1-2,
27-45.
[14] Dikranjan, D. and Giuli, E. Closure operators I. Topology Appl. 27 (1987), 129-143.
[15] Johnstone, P.T., Topos Theory. London Math. Soc. Monographs. No. 10, Academic Press, New York, 1977.
[16] Katˇetov, M., On continuity structures and spaces of mappings. Comm. Math. Univ. Car. 6 (1965), 257-278.
[17] Keller, H., Die Limes-uniformisierbarkeit der Limesräume. Math. Ann. 176 (1968), 334-341.
[18] Kent, D. C. and Richardson, G. D., Cauchy Spaces with Regular Completions. Pacific J. Math. 3 (1984), 105-116.
[19] Kent, D. C. and Richardson, G. D., Cauchy Completion Categories. Canad. Math. Bull. 32 (1989), 78-83.
[20] Kowalsky, H. J., Limesräume und Komplettierung. Math. Nachr. 12 (1954), 301-340.
[21] Kula, M., A Note on Cauchy Spaces. Acta Math. Hungar. 133 (2011), no. 1-2, 14-32, DOI:10.1007/s10474-011-
0136-9.
[22] Kula, M., Separation properties at p for the topological category of Cauchy Spaces. Acta Math. Hungar. 136
(2012), no. 1-2, 1-15, DOI: 10.1007/s10474-012-0238-z.
[23] Kula, M., T3 and T4-Objects in the Topological Category of Cauchy Spaces. Communications, Series
A1:Mathematics and Statistics. 66 (2017), no. 1, 29-42.
[24] Lowen-Colebunders, E., Function classes of Cauchy Continuous maps M. Dekker, New York, 1989.
[25] Marny, Th., Rechts-Bikategoriestrukturen in topologischen Kategorien. Dissertation, Freie Universität Berlin,
1973.
[26] Mielke, M.V., Separation axioms and geometric realizations. Indian J. Pure Appl. Math. 25 (1994), 711-722.
[27] Munkres, J. R., Topology:A First Course, Prentice-Hall, 1975.
[28] Nel, L. D., Initially structured categories and cartesian closedness. Canad. Journal of Math. XXVII (1975),
1361-1377.
[29] Preuss, G., Theory of Topological Structures. An Approach to Topological Categories., D. Reidel Publ. Co.,
Dordrecht, 1988.
[30] Preuss, G., Improvement of Cauchy spaces. Q&A in General Topology. 9 (1991), 159-166.
[31] Ramaley, J. F. andWyler, O., Cauchy Spaces II: Regular Completions and Compactifications, Math. Ann. 187
(1970), 187-199.
[32] Rath, N., Precauchy spaces, PH.D. Thesis, Washington State University, 1994.
[33] Rath, N., Completion of a Cauchy space without the T2-restriction on the space. Int. J. Math. Math. Sci. 3, 24
(2000), 163-172.
[34] Weck-Schwarz, S., T0-objects and separated objects in topological categories. Quaestiones Math. 14 (1991),
315-325.
Year 2018,
Volume: 6 Issue: 2, 28 - 37, 31.10.2018
[1] Adámek, J., Herrlich, H. and Strecker, G. E., Abstract and Concrete Categories, Wiley, New York, 1990.
[2] Baran, M., Separation properties. Indian J. Pure Appl. Math. 23 (1992), 333-341.
[3] Baran, M., Stacks and filters. Turkish J. of Math.-Do˘ga. 16 (1992), 95-108.
[4] Baran, M., The notion of closedness in topological categories. Comment. Math. Univ. Carolinae. 34 (1993), 383-395.
[5] Baran, M., Generalized Local Separation Properties. Indian J. Pure Appl. Math. 25 (1994), 615-620.
[6] Baran, M., A notion of compactness in topological categories. Publ. Math. Debrecen. 50 (3-4), 221-234, 1997.
[7] Baran, M., T3 and T4-objects in topological categories. Indian J. Pure Appl. Math. 29 (1), 59-69, 1998.
[8] Baran, M., Closure operators in convergence spaces. Acta Math. Hungar. 87 (2000), 33-45.
[9] Baran, M., Compactness, perfectness, separation, minimality and closedness with respect to closure operators.
Applied Categorical Structures. 10 (2002), 403-415.
[10] Baran, M., PreT2-objects in topological categories. Applied Categorical Structures. 17 (2009), 591-602, DOI
10.1007/s10485-008-9161-4.
[11] Baran, M. and Altındi¸s, H., T2-objects in topological categories. Acta Math. Hungar. 71 (1996), no. 1-2, 41-48.
[12] Baran, M. and Kula, M., A note on separation and compactness in categories of convergence spaces. Proceedings
of the International Conference on Applicable General Topology (Ankara, 2001). Appl. Gen. Topol. 4 (1), 1-13, 2003.
[13] Bentley, H. L., Herrlich, H. and Lowen-Colebunders, E., Convergence. J. Pure Appl. Algebra. 68 (1990), no 1-2,
27-45.
[14] Dikranjan, D. and Giuli, E. Closure operators I. Topology Appl. 27 (1987), 129-143.
[15] Johnstone, P.T., Topos Theory. London Math. Soc. Monographs. No. 10, Academic Press, New York, 1977.
[16] Katˇetov, M., On continuity structures and spaces of mappings. Comm. Math. Univ. Car. 6 (1965), 257-278.
[17] Keller, H., Die Limes-uniformisierbarkeit der Limesräume. Math. Ann. 176 (1968), 334-341.
[18] Kent, D. C. and Richardson, G. D., Cauchy Spaces with Regular Completions. Pacific J. Math. 3 (1984), 105-116.
[19] Kent, D. C. and Richardson, G. D., Cauchy Completion Categories. Canad. Math. Bull. 32 (1989), 78-83.
[20] Kowalsky, H. J., Limesräume und Komplettierung. Math. Nachr. 12 (1954), 301-340.
[21] Kula, M., A Note on Cauchy Spaces. Acta Math. Hungar. 133 (2011), no. 1-2, 14-32, DOI:10.1007/s10474-011-
0136-9.
[22] Kula, M., Separation properties at p for the topological category of Cauchy Spaces. Acta Math. Hungar. 136
(2012), no. 1-2, 1-15, DOI: 10.1007/s10474-012-0238-z.
[23] Kula, M., T3 and T4-Objects in the Topological Category of Cauchy Spaces. Communications, Series
A1:Mathematics and Statistics. 66 (2017), no. 1, 29-42.
[24] Lowen-Colebunders, E., Function classes of Cauchy Continuous maps M. Dekker, New York, 1989.
[25] Marny, Th., Rechts-Bikategoriestrukturen in topologischen Kategorien. Dissertation, Freie Universität Berlin,
1973.
[26] Mielke, M.V., Separation axioms and geometric realizations. Indian J. Pure Appl. Math. 25 (1994), 711-722.
[27] Munkres, J. R., Topology:A First Course, Prentice-Hall, 1975.
[28] Nel, L. D., Initially structured categories and cartesian closedness. Canad. Journal of Math. XXVII (1975),
1361-1377.
[29] Preuss, G., Theory of Topological Structures. An Approach to Topological Categories., D. Reidel Publ. Co.,
Dordrecht, 1988.
[30] Preuss, G., Improvement of Cauchy spaces. Q&A in General Topology. 9 (1991), 159-166.
[31] Ramaley, J. F. andWyler, O., Cauchy Spaces II: Regular Completions and Compactifications, Math. Ann. 187
(1970), 187-199.
[32] Rath, N., Precauchy spaces, PH.D. Thesis, Washington State University, 1994.
[33] Rath, N., Completion of a Cauchy space without the T2-restriction on the space. Int. J. Math. Math. Sci. 3, 24
(2000), 163-172.
[34] Weck-Schwarz, S., T0-objects and separated objects in topological categories. Quaestiones Math. 14 (1991),
315-325.
Kula, M., & Kula, S. (2018). Tychonoff Objects in the Topological Category of Cauchy Spaces. Mathematical Sciences and Applications E-Notes, 6(2), 28-37. https://doi.org/10.36753/mathenot.476787
AMA
Kula M, Kula S. Tychonoff Objects in the Topological Category of Cauchy Spaces. Math. Sci. Appl. E-Notes. October 2018;6(2):28-37. doi:10.36753/mathenot.476787
Chicago
Kula, Muammer, and Sümeyye Kula. “Tychonoff Objects in the Topological Category of Cauchy Spaces”. Mathematical Sciences and Applications E-Notes 6, no. 2 (October 2018): 28-37. https://doi.org/10.36753/mathenot.476787.
EndNote
Kula M, Kula S (October 1, 2018) Tychonoff Objects in the Topological Category of Cauchy Spaces. Mathematical Sciences and Applications E-Notes 6 2 28–37.
IEEE
M. Kula and S. Kula, “Tychonoff Objects in the Topological Category of Cauchy Spaces”, Math. Sci. Appl. E-Notes, vol. 6, no. 2, pp. 28–37, 2018, doi: 10.36753/mathenot.476787.
ISNAD
Kula, Muammer - Kula, Sümeyye. “Tychonoff Objects in the Topological Category of Cauchy Spaces”. Mathematical Sciences and Applications E-Notes 6/2 (October 2018), 28-37. https://doi.org/10.36753/mathenot.476787.
JAMA
Kula M, Kula S. Tychonoff Objects in the Topological Category of Cauchy Spaces. Math. Sci. Appl. E-Notes. 2018;6:28–37.
MLA
Kula, Muammer and Sümeyye Kula. “Tychonoff Objects in the Topological Category of Cauchy Spaces”. Mathematical Sciences and Applications E-Notes, vol. 6, no. 2, 2018, pp. 28-37, doi:10.36753/mathenot.476787.
Vancouver
Kula M, Kula S. Tychonoff Objects in the Topological Category of Cauchy Spaces. Math. Sci. Appl. E-Notes. 2018;6(2):28-37.