Research Article
BibTex RIS Cite

Generalized $(H,\phi )$-Convexity and New Hermite-Hadamard Type Inequalities

Year 2025, Volume: 13 Issue: 4, 201 - 208
https://doi.org/10.36753/mathenot.1778929

Abstract

In this paper, we introduce a novel class of convex functions, called $(H,\phi)$-convex functions, defined via a general parametric mean $\phi$ and a weighting function $H$. This new convexity notion encompasses several well-known classes such as standard convexity, $s$-convexity, $h$-convexity, and $m$-convexity as particular cases. We provide illustrative examples demonstrating that this class is genuinely more general. Furthermore, we derive a new Hermite-Hadamard type inequality tailored to the $(H, \phi)$ -convex framework. Our results extend and unify various existing inequalities in the literature.

References

  • [1] Dragomir, S. S., Pearce, C. E. M.: Selected Topics on Hermite-Hadamard Inequalities and Applications. RGMIA Monographs, 2003.
  • [2] Pečarić, J., Proschan, F., Tong, Y. L.: Convex Functions, Partial Orderings and Statistical Applications. Mathematics in Science and Engineering, 187 Academic Press, Boston MA, 1992.
  • [3] Breckner, W. W.: Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Raumen. Publications de l’Institut Mathematique (Beograd). 23 (37), 13–20, (1978).
  • Toader, G.: Some generalizations of the convexity. In: Proceedings of the Colloquium on Approximation and Optimization, 25–27 October 1984, Cluj-Napoca, Romania 329–338 (1984).
  • [5] Varosanec, S.: On $h$-convexity. Journal of Mathematical Analysis and Applications. 326 (1), 303–311, (2007).
  • [6] Bakula, M. K., Pecaric, J., Ribicic, D.: Companion inequalities to Jensen’s inequality for $m$-convex and $ (\alpha ,m)$-convex functions. Journal of Inequalities in Pure and Applied Mathematics. 7 (5), 194 (2006).
  • [7] Bakula, M. K., Özdemir, M. E., Pecaric, J.: Hadamard type inequalities for $m$-convex and $ (\alpha ,m)$-convex functions. Journal of Inequalities in Pure and Applied Mathematics. 9 (4), 96 (2008).
  • [8] Mihesan, V.: A Generalization of the Convexity. Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, Romania, 1993.
  • [9] Sarikaya, M. Z., Saglam, A., Yıldırım, H.: On some Hadamard-type inequalities for $h$-convex functions. Journal of Mathematical Inequalities. 2 (3), 335–341, (2008).
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions, Approximation Theory and Asymptotic Methods
Journal Section Research Article
Authors

Mehmet Zeki Sarikaya 0000-0002-6165-9242

Early Pub Date November 6, 2025
Publication Date November 30, 2025
Submission Date September 5, 2025
Acceptance Date November 4, 2025
Published in Issue Year 2025 Volume: 13 Issue: 4

Cite

APA Sarikaya, M. Z. (2025). Generalized $(H,\phi )$-Convexity and New Hermite-Hadamard Type Inequalities. Mathematical Sciences and Applications E-Notes, 13(4), 201-208. https://doi.org/10.36753/mathenot.1778929
AMA Sarikaya MZ. Generalized $(H,\phi )$-Convexity and New Hermite-Hadamard Type Inequalities. Math. Sci. Appl. E-Notes. November 2025;13(4):201-208. doi:10.36753/mathenot.1778929
Chicago Sarikaya, Mehmet Zeki. “Generalized $(H,\phi )$-Convexity and New Hermite-Hadamard Type Inequalities”. Mathematical Sciences and Applications E-Notes 13, no. 4 (November 2025): 201-8. https://doi.org/10.36753/mathenot.1778929.
EndNote Sarikaya MZ (November 1, 2025) Generalized $(H,\phi )$-Convexity and New Hermite-Hadamard Type Inequalities. Mathematical Sciences and Applications E-Notes 13 4 201–208.
IEEE M. Z. Sarikaya, “Generalized $(H,\phi )$-Convexity and New Hermite-Hadamard Type Inequalities”, Math. Sci. Appl. E-Notes, vol. 13, no. 4, pp. 201–208, 2025, doi: 10.36753/mathenot.1778929.
ISNAD Sarikaya, Mehmet Zeki. “Generalized $(H,\phi )$-Convexity and New Hermite-Hadamard Type Inequalities”. Mathematical Sciences and Applications E-Notes 13/4 (November2025), 201-208. https://doi.org/10.36753/mathenot.1778929.
JAMA Sarikaya MZ. Generalized $(H,\phi )$-Convexity and New Hermite-Hadamard Type Inequalities. Math. Sci. Appl. E-Notes. 2025;13:201–208.
MLA Sarikaya, Mehmet Zeki. “Generalized $(H,\phi )$-Convexity and New Hermite-Hadamard Type Inequalities”. Mathematical Sciences and Applications E-Notes, vol. 13, no. 4, 2025, pp. 201-8, doi:10.36753/mathenot.1778929.
Vancouver Sarikaya MZ. Generalized $(H,\phi )$-Convexity and New Hermite-Hadamard Type Inequalities. Math. Sci. Appl. E-Notes. 2025;13(4):201-8.

INDEXING & ABSTRACTING & ARCHIVING

34771           




20477   The published articles in MSAEN are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.