Research Article
BibTex RIS Cite

Elektron Işınıyla Ergitme Yöntemiyle Üretilen Ti6Al4V Parçalarının Mekanik Özellikleri Üzerinde İnşa Yönünün Etkisi

Year 2021, Volume: 19 Issue: 1, 1 - 9, 02.05.2021

Abstract

Bu çalışmanın amacı Ti6Al4V alaşım tozları kullanarak elektron ışınıyla ergitme yöntemiyle üretilen parçaların mekanik özellikleri üzerinde inşa yönünün etkisini araştırmaktır. Üç eksende (x, y ve z) numuneler üretilmiş ve yüzey pürüzlülüğünün mekanik özellikler üzerindeki etkisini görebilmek için her bir yöndeki bir numune tornalanmıştır. ASTM E8 standardına göre her bir yönde yapılan çekme testi sonuçlarına göre, z yönünde üretilen numunelerin akma ve çekme dayanımları, x ve y yönlerinde üretilenlere göre daha yüksek çıkmıştır. Her bir yönde üretilen numunelerin akma ve çekme dayanımları, dövme ya da döküm Ti6Al4V parçaların aynı özelliklerinden yüksek çıkmıştır. Numuneler sünek-kırılgan karışımı bir yapı göstermiş, mikroyapı genel olarak Widmanstatten / sepet örgüsü şeklinde çıkmış ve β taneciklerinin içerisinde α ince tanecikli mikroyapı görülmüştür.

References

  • Banerjee, D., Williams, J. C., “Perspectives on Titanium Science and Technology”, Acta Materialia, 61, 2013, 844-879.
  • Herzog, D., Seyda, V., Wycisk, E., Emmelmann, C., “Additive Manufacturing of Metals”, Acta Materialia, 117, 2016, 371-392.
  • Yamanaka, K., Saito, W., Mori, M., Matsumoto, H., Chiba, A., “Preparation of Weak-Textured Commercially Pure Titanium by Electron Beam Melting”, Additive Manufacturing, 8, 2015, 105-109.
  • Murr, L. E., Esquivel, E. V., Quinones, S. A., Gaytan, S. M., Lopez, M. I., Martinez, E. Y., Medina, F., Hernandez, D. H., Martinez, E., Martinez, J. L., Stafford, S. W., Brown, D. K., Hoppe, T., Meyers, W., Lindhe, U., Wicker, R. B., “Microstructures and Mechanical Properties of Electron Beam-Rapid Manufactured Ti-6Al-4V Biomedical Prototypes Compared to Wrought Ti-6Al-4V”, Materials Characterization, 60, 2009, 96-105.
  • Thomas, M., Malot, T., Aubry, P., Colin, C., Vilaro, T., Bertrand, P., “The Prospects for Additive Manufacturing of Bulk TiAl Alloy”, Materials At High Temperatures, 33, 2016, 571-577.
  • Shamsaei, N., Yadollahi, A., Bian, L., Thompson, S. M., “An Overview of Direct Laser Deposition for Additive Manufacturing; Part II: Mechanical Behavior, Process Parameter Optimization and Control”, Additive Manufacturing, 8, 2015, 12–35.
  • Guan, K., Wang, Z., Gao, M., Li, X., Zeng, X., “Effects of Processing Parameters on Tensile Properties of Selective Laser Melted 304 Stainless Steel”, Material Design, 50, 2013, 581-586.
  • Casati, R., Lemke, J., Vedani, M., “Microstructure and Fracture Behavior of 316L Austenitic Stainless Steel Produced by Selective Laser Melting”, Journal of Material Science and Technology, 32, 2016, 738-744.
  • Hrabe, N., Quinn, T., “Effects of Processing on Microstructure and Mechanical Properties of a Titanium Alloy (Ti–6Al–4V) Fabricated Using Electron Beam Melting (EBM), Part 2: Energy Input, Orientation, and Location”, Material Science and Engineering A, 573, 2013, 271-277.
  • Kobryn, P., Semiatin, S., “Microstructure and Texture Evolution During Solidification Processing of Ti–6Al–4V”, Journal of Material Processing Technology, 135, 2013, 330-339.
  • Wauthle, R., Vrancken, B., Beynaerts, B., Jorissen, K., Schrooten, J., Kruth, J., Humbeeck, J. V., “Effects of Build Orientation and Heat Treatment on the Microstructure and Mechanical Properties of Selective Laser Melted Ti6Al4V Lattice Structures”, Additive Manufacturing, 5, 2015, 77-84.
  • Wycisk, E., Emmelmann, C., Siddique, S., Walther, F., “High Cycle Fatigue (HCF) Performance of Ti-6Al-4V Alloy Processed by Selective Laser Melting”, Advanced Materials Research, 816, 2013, 134-139.
  • Edwards, P., O’Conner, A., Ramulu, M., “Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance”, Journal of Manufacturing Science and Engineering, 135, 2013, 1-7.
  • Formanoir, C., Michotte, S., Rigo, O., Germain, L., Godet, S., “Electron Beam Melted Ti-6Al-4V: Microstructure, Texture and Mechanical Behavior of the As-Built and Heat-Treated Material”, Material Science and Engineering A, 652, 2016, 105-119.
  • Blackwell, P. L., “The Mechanical and Microstructural Characteristics of Laser-Deposited In718”, Journal of Material Processing Technology, 170, 2015, 240-246.
  • Al-Bermani, S. S., Blackmore, M. L., Zhang, W., Todd, I., “The Origin of Microstructural Diversity, Texture and Mechanical Properties In Electron Beam Melted Ti-6Al-4V”, Metallurgical and Materials Transactions A, 41, 2010, 3422-3434.
  • Zhai, Y., Galarraga, H., Lados, D. A., “Microstructure Evolution, Tensile Properties, and Fatigue Damage Mechanisms in Ti-6Al-4V Alloys Fabricated by Two Additive Manufacturing Techniques”, Procedia Engineering, 114, 2015, 658-666.
  • Suard, M., “Characterization and Optimization of Lattice Structures Made by Electron Beam Melting, PhD. Thesis, Universite De Grenoble, France, 2006.
  • Karlsson, J., Sjogren, T., Snis, A., Engqvist, H., Lausmaa, J., “Digital Image Correlation Analysis of Local Strain Fields on Ti6Al4V Manufactured by Electron Beam Melting”, Material Science and Engineering A, 618, 2014, 456-461.
  • Schulze, C., Weinmann, M., Schweigel, C., Keßler, O., Bader, R., “Mechanical Properties of a Newly Additive Manufactured Implant Material Based on Ti-42Nb”, Materials, 11, 2018, 1-20.
  • Shunmugavela, M., Polishettya, A., Littlefair, G., “Microstructure and Mechanical Properties of Wrought and Additive Manufactured Ti-6Al-4V Cylindrical Bars”, Procedia Technology, 20, 2015, 231-236.
  • Quénard, O., Dorival, O., Guy, P. H., Votié, A., Brethome, K., “Measurement of Fracture Toughness of Metallic Materials Produced by Additive Manufacturing”, Ceas Space Journal, 10, 2018, 343-353.
  • Mills, K., “Metallography and Microstructures”, ASM Handbook 9, ASM International, Materials Park, OH, USA, 1985.
  • Galarraga, H., Lados, D. A., Dehoff, R. R., Kirka, M. M., Nandwana, P., “Effects of the Microstructure and Porosity on Properties of Ti-6Al-4V ELI Alloy Fabricated by Electron Beam Melting (EBM)”, Additive Manufacturing, 10, 2016, 47-57.
  • Rafi, H. K., Karthik, N. V., Gong, H., Starr, T. L., Stucker, B. E., “Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting”, Journal of Materials Engineering and Performance, 22, 2013, 3872-3883.
  • Bass, B. S., “Validating the Arcam EBM Process as an Alternative Fabrication Method for Titanium-6Al-4V Alloys”, Ms. Thesis, N. C. State University, USA, 2008.

Effect of Building Direction on Mechanical Properties of Ti6al4v Parts Produced by Electron Beam Melting

Year 2021, Volume: 19 Issue: 1, 1 - 9, 02.05.2021

Abstract

The aim of this study is to investigate the effect of building direction on mechanical properties of the parts fabricated using Ti6Al4V alloy powders by electron beam melting method. Three specimens in three different directions (X, Y and Z) were produced and to see the effect of surface roughness on mechanical properties, one of the samples in each direction were machined by lathe. The results of tension tests on samples produced in three directions according to ASTM E8 standard revealed that yield and tensile strength of the samples built in Z direction are higher than the related properties of the samples built in X and Y directions. Yield and tensile strength of the samples built in each of the direction comes out to be higher than the same properties of the wrought or cast Ti6Al4V parts. Specimens displayed a mixed ductile-brittle fracture characteristic and the microstructure is mainly Widmanstatten / basket weave and α lamellar microstructure was observed inside the prior β grains.

References

  • Banerjee, D., Williams, J. C., “Perspectives on Titanium Science and Technology”, Acta Materialia, 61, 2013, 844-879.
  • Herzog, D., Seyda, V., Wycisk, E., Emmelmann, C., “Additive Manufacturing of Metals”, Acta Materialia, 117, 2016, 371-392.
  • Yamanaka, K., Saito, W., Mori, M., Matsumoto, H., Chiba, A., “Preparation of Weak-Textured Commercially Pure Titanium by Electron Beam Melting”, Additive Manufacturing, 8, 2015, 105-109.
  • Murr, L. E., Esquivel, E. V., Quinones, S. A., Gaytan, S. M., Lopez, M. I., Martinez, E. Y., Medina, F., Hernandez, D. H., Martinez, E., Martinez, J. L., Stafford, S. W., Brown, D. K., Hoppe, T., Meyers, W., Lindhe, U., Wicker, R. B., “Microstructures and Mechanical Properties of Electron Beam-Rapid Manufactured Ti-6Al-4V Biomedical Prototypes Compared to Wrought Ti-6Al-4V”, Materials Characterization, 60, 2009, 96-105.
  • Thomas, M., Malot, T., Aubry, P., Colin, C., Vilaro, T., Bertrand, P., “The Prospects for Additive Manufacturing of Bulk TiAl Alloy”, Materials At High Temperatures, 33, 2016, 571-577.
  • Shamsaei, N., Yadollahi, A., Bian, L., Thompson, S. M., “An Overview of Direct Laser Deposition for Additive Manufacturing; Part II: Mechanical Behavior, Process Parameter Optimization and Control”, Additive Manufacturing, 8, 2015, 12–35.
  • Guan, K., Wang, Z., Gao, M., Li, X., Zeng, X., “Effects of Processing Parameters on Tensile Properties of Selective Laser Melted 304 Stainless Steel”, Material Design, 50, 2013, 581-586.
  • Casati, R., Lemke, J., Vedani, M., “Microstructure and Fracture Behavior of 316L Austenitic Stainless Steel Produced by Selective Laser Melting”, Journal of Material Science and Technology, 32, 2016, 738-744.
  • Hrabe, N., Quinn, T., “Effects of Processing on Microstructure and Mechanical Properties of a Titanium Alloy (Ti–6Al–4V) Fabricated Using Electron Beam Melting (EBM), Part 2: Energy Input, Orientation, and Location”, Material Science and Engineering A, 573, 2013, 271-277.
  • Kobryn, P., Semiatin, S., “Microstructure and Texture Evolution During Solidification Processing of Ti–6Al–4V”, Journal of Material Processing Technology, 135, 2013, 330-339.
  • Wauthle, R., Vrancken, B., Beynaerts, B., Jorissen, K., Schrooten, J., Kruth, J., Humbeeck, J. V., “Effects of Build Orientation and Heat Treatment on the Microstructure and Mechanical Properties of Selective Laser Melted Ti6Al4V Lattice Structures”, Additive Manufacturing, 5, 2015, 77-84.
  • Wycisk, E., Emmelmann, C., Siddique, S., Walther, F., “High Cycle Fatigue (HCF) Performance of Ti-6Al-4V Alloy Processed by Selective Laser Melting”, Advanced Materials Research, 816, 2013, 134-139.
  • Edwards, P., O’Conner, A., Ramulu, M., “Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance”, Journal of Manufacturing Science and Engineering, 135, 2013, 1-7.
  • Formanoir, C., Michotte, S., Rigo, O., Germain, L., Godet, S., “Electron Beam Melted Ti-6Al-4V: Microstructure, Texture and Mechanical Behavior of the As-Built and Heat-Treated Material”, Material Science and Engineering A, 652, 2016, 105-119.
  • Blackwell, P. L., “The Mechanical and Microstructural Characteristics of Laser-Deposited In718”, Journal of Material Processing Technology, 170, 2015, 240-246.
  • Al-Bermani, S. S., Blackmore, M. L., Zhang, W., Todd, I., “The Origin of Microstructural Diversity, Texture and Mechanical Properties In Electron Beam Melted Ti-6Al-4V”, Metallurgical and Materials Transactions A, 41, 2010, 3422-3434.
  • Zhai, Y., Galarraga, H., Lados, D. A., “Microstructure Evolution, Tensile Properties, and Fatigue Damage Mechanisms in Ti-6Al-4V Alloys Fabricated by Two Additive Manufacturing Techniques”, Procedia Engineering, 114, 2015, 658-666.
  • Suard, M., “Characterization and Optimization of Lattice Structures Made by Electron Beam Melting, PhD. Thesis, Universite De Grenoble, France, 2006.
  • Karlsson, J., Sjogren, T., Snis, A., Engqvist, H., Lausmaa, J., “Digital Image Correlation Analysis of Local Strain Fields on Ti6Al4V Manufactured by Electron Beam Melting”, Material Science and Engineering A, 618, 2014, 456-461.
  • Schulze, C., Weinmann, M., Schweigel, C., Keßler, O., Bader, R., “Mechanical Properties of a Newly Additive Manufactured Implant Material Based on Ti-42Nb”, Materials, 11, 2018, 1-20.
  • Shunmugavela, M., Polishettya, A., Littlefair, G., “Microstructure and Mechanical Properties of Wrought and Additive Manufactured Ti-6Al-4V Cylindrical Bars”, Procedia Technology, 20, 2015, 231-236.
  • Quénard, O., Dorival, O., Guy, P. H., Votié, A., Brethome, K., “Measurement of Fracture Toughness of Metallic Materials Produced by Additive Manufacturing”, Ceas Space Journal, 10, 2018, 343-353.
  • Mills, K., “Metallography and Microstructures”, ASM Handbook 9, ASM International, Materials Park, OH, USA, 1985.
  • Galarraga, H., Lados, D. A., Dehoff, R. R., Kirka, M. M., Nandwana, P., “Effects of the Microstructure and Porosity on Properties of Ti-6Al-4V ELI Alloy Fabricated by Electron Beam Melting (EBM)”, Additive Manufacturing, 10, 2016, 47-57.
  • Rafi, H. K., Karthik, N. V., Gong, H., Starr, T. L., Stucker, B. E., “Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting”, Journal of Materials Engineering and Performance, 22, 2013, 3872-3883.
  • Bass, B. S., “Validating the Arcam EBM Process as an Alternative Fabrication Method for Titanium-6Al-4V Alloys”, Ms. Thesis, N. C. State University, USA, 2008.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Araştırma, Geliştirme ve Uygulama Makaleleri
Authors

Orhan Gülcan 0000-0002-6688-2662

Selen Temel Yiğitbaşı 0000-0001-7596-681X

Erhan İlhan Konukseven 0000-0002-3597-4222

Publication Date May 2, 2021
Submission Date September 5, 2020
Published in Issue Year 2021 Volume: 19 Issue: 1

Cite

Vancouver Gülcan O, Temel Yiğitbaşı S, Konukseven Eİ. Elektron Işınıyla Ergitme Yöntemiyle Üretilen Ti6Al4V Parçalarının Mekanik Özellikleri Üzerinde İnşa Yönünün Etkisi. MATİM. 2021;19(1):1-9.