BibTex RIS Cite

NÜKLEER TIP UYGULAMALARINDA İNTERNAL DOZİMETRİ METODLARININ DEĞERLENDİRİLMESİ

Year 2013, Volume: 14 Issue: 3, 47 - 54, 01.12.2013

Abstract

Nükleer tıp uygulamalarında tanı ve tedavi amaçlı birçok radyonüklid kullanılır. Vücuttaki farklı organlar tarafından soğurulan radyasyon dozunun bilinmesi bu uygulamaların risklerinin ve yararlarının değerlendirilebilmesi açısından oldukça önemlidir. İnternal dozimetri vücut içindeki radyonüklidler ile dokuda depo edilen radyasyon enerjisinin uzaysal ve zamansal dağılımı ve miktarının belirlenmesi ile ilgilenir. Nükleer tıpta tiroid kanseri ve hipertiroidi tedavisinde yaygın kullanımı olan I-31 radyoizotopunun yanında, son yıllarda hepatosellüler karsinoma ve nöroendokrin tümör tedavisinde rutin uygulamaya giren Lu-177 ve Y-90 radyoizotopları da başarı ile uygulanmaktadır. Risk değerlendirilmesi açısından, organ doz hesapları Medikal İnternal Radyasyon Dozimetri (MIRD) tarafından belirlenen standart uygulamanın yanısıra, hastaya spesifik olarak kinetik ve anatomik parametrelerin değerlendirilmesi açısından önemlidir. Bu çalışmada internal dozimetri hesaplarında kullanılan metotlar ele alınmış, bu metodlarda farklı yaş ve cinsiyetlerdeki bireyleri temsil eden uygun modeller, matematiksel formulasyonlar ile açıklanmıştır

References

  • 1. Stabin MG, Siegel JAPhysical models and dose factors for use in internal dose assessment. Health Phys 2003;85:294-310.
  • 2. Toohey RE, Stabin MG, Watson BA. The AAPM/RSNA physics tutorial for residents internal radiation dosimetry: Principles and applications. Imaging Therapeutic Tecchology 2000;20:533-46.
  • 3. Stabin MG. Nuclear Medine dosimetry. Phys Med Biol 2006;51:R187-R202.
  • 4. Zanzonico PB. Internal radionuclide radiation dosimetry: A Review of basic concepts and recent developments nuclear medicine service, Memorial Sloan Kettering Cancer Center, New York, 1999 New York Oct. 12
  • 5. Lassmann M, Hanscheid H, Chiesa C, Hindorf C, Flux G, Luster M. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging 2008;35:1405-12.
  • 6. Nieuwlaat WA, Hermus AR, Ross HA, Buijs WC, Edelbroek MA, Bus JW, Corstens FH, Huysmans DA. Dosimetry of radioiodine therapy in patientswith nodular goiter after pretreatment with a single, low dose of recombinant human thyroid-stimulating hormone.J Nucl Med 2004;45:626-33.
  • 7. Stabin MG. Radiation protection and dosimetry: An introduction in health physics, Springer, New York, 2007:205-28.
  • 8. Stabin MG. Personal computer software for internal dose assessment in nuclear medicine. MIRDOSE. J Nucl Med 1996;37:538-46.
  • 9. Sabbir A, Demir M, Yasar D, Uslu I. Quantification of absorbed doses to urine bladder depending on drinking water during radiooiodine therapy to thyroid cancer patients: a clinical study using MIRDOSE3 Nuclear Medicine Communications 2003;24:749-54.
  • 10. Stabin MG, Siegel JA, Sparks RB, Eckerman KF, Breitz HB.Contribution to red marrow absorbed dose from total body activity: a correction to the MIRD method. J Nucl Med 2001;42:492-8.
  • 11. Cristy M, Eckerman K. Specific absorbed fractions of energy at various ages from internal photons sources. Oak Ridge Oak Ridge National Laboratory; 1987: V1- V7.ORNL/TM-8381/V7
  • 12. Stabin MG. Nuclear medicine dosimetry. Phys Med Biol 2006;51:R187-R202.
  • 13. Siegel JA. Establishing a clinically meaningful predictive model of hematologic toxicity in nonmyeloablative targeted radiotherapy: practical aspects and limitations of red marrow dosimetry. Cancer Biother Radiopharm 2005;20(2):126-40.
  • 14. Shen S1, DeNardo GL, Sgouros G, O'Donnell RT, DeNardo SJ.Practical determination of patient-specific marrow dose using radioactivity concentration in blood and body. J Nucl Med 1999;40:2102-6.
  • 15. Sorenson J.A., Phepls M. Physics in Nuclear Medicine 2004 Second Edition
  • 16. Demir M. Nükleer tıp fiziği ve klinik uygulamaları ders kitabı. Türkiye Kitabevi, İstanbul, 2008.
  • 17. Esser JP, Krenning EP, Teunissen JJ, Kooij PP, van Gameren AL, Bakker WH, Kwekkeboom DJ. Comparison of [177Lu-DOTA0,Tyr3] octreotate and [177Lu-DOTA0,Tyr3] octreotide: which peptide is preferable for PRRT? Eur J Nucl Med Mol Imaging 2006; 33:1346-51.
  • 18. Stubbs J. Anew mathematical model of gastrointestinal transit incorporating age- and gender-dependent physiological parameters. In Proc: Fifth International Radiopharmaceutical Dosimetry Symposium, Oak Ridge Associated Universities, Oak Ridge, TN, 1992:229-42.
  • 19. ICRP, 1979. Limits for Intakes of Radionuclides by Workers. ICRP Publication 30 (Part 1). Ann ICRP 2 (3- 4).
  • 20. ICRP, 1998. Radiation Dose to Patients from Radiopharmaceuticals (Addendum to ICRP Publication 53). ICRP Publication 80. Ann. ICRP 28 (3).

Evaluation of Internal Dosimetry Methods in Nuclear Medicine Applications

Year 2013, Volume: 14 Issue: 3, 47 - 54, 01.12.2013

Abstract

Many radionuclides are used for diagnostic and therapeutic in nuclear medicine applications. The knowledge of radiation dose absorbed by different organs in the body is critical to evaluate known risks and benefits of these applications. Internal dosimetry deals with the determination of the amount and the spatial and temporal distribution of radiation energy deposited in tissue by radionuclides within the body. Widely used in nuclear medicine in the treatment of thyroid cancer and hyperthyroidism radioisotope I-131, as well as routine practice in recent years into the treatment of hepatocellular carcinoma and neuroendocrine tumor Lu-177 and Y-90 also successfully applied to radioisotopes. In terms of risk assessment, the organ dose calculations Medical Internal Radiation Dosimetry (MIRD), as well as the application of the standard set by the patient-specific parameters in the evaluation of kinetics and anatomy is important. The methods used internal dosimetry calculations in this study are considered and the appropriate models representing individuals of different ages and regardless of gender are described with mathematical formulations.

References

  • 1. Stabin MG, Siegel JAPhysical models and dose factors for use in internal dose assessment. Health Phys 2003;85:294-310.
  • 2. Toohey RE, Stabin MG, Watson BA. The AAPM/RSNA physics tutorial for residents internal radiation dosimetry: Principles and applications. Imaging Therapeutic Tecchology 2000;20:533-46.
  • 3. Stabin MG. Nuclear Medine dosimetry. Phys Med Biol 2006;51:R187-R202.
  • 4. Zanzonico PB. Internal radionuclide radiation dosimetry: A Review of basic concepts and recent developments nuclear medicine service, Memorial Sloan Kettering Cancer Center, New York, 1999 New York Oct. 12
  • 5. Lassmann M, Hanscheid H, Chiesa C, Hindorf C, Flux G, Luster M. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging 2008;35:1405-12.
  • 6. Nieuwlaat WA, Hermus AR, Ross HA, Buijs WC, Edelbroek MA, Bus JW, Corstens FH, Huysmans DA. Dosimetry of radioiodine therapy in patientswith nodular goiter after pretreatment with a single, low dose of recombinant human thyroid-stimulating hormone.J Nucl Med 2004;45:626-33.
  • 7. Stabin MG. Radiation protection and dosimetry: An introduction in health physics, Springer, New York, 2007:205-28.
  • 8. Stabin MG. Personal computer software for internal dose assessment in nuclear medicine. MIRDOSE. J Nucl Med 1996;37:538-46.
  • 9. Sabbir A, Demir M, Yasar D, Uslu I. Quantification of absorbed doses to urine bladder depending on drinking water during radiooiodine therapy to thyroid cancer patients: a clinical study using MIRDOSE3 Nuclear Medicine Communications 2003;24:749-54.
  • 10. Stabin MG, Siegel JA, Sparks RB, Eckerman KF, Breitz HB.Contribution to red marrow absorbed dose from total body activity: a correction to the MIRD method. J Nucl Med 2001;42:492-8.
  • 11. Cristy M, Eckerman K. Specific absorbed fractions of energy at various ages from internal photons sources. Oak Ridge Oak Ridge National Laboratory; 1987: V1- V7.ORNL/TM-8381/V7
  • 12. Stabin MG. Nuclear medicine dosimetry. Phys Med Biol 2006;51:R187-R202.
  • 13. Siegel JA. Establishing a clinically meaningful predictive model of hematologic toxicity in nonmyeloablative targeted radiotherapy: practical aspects and limitations of red marrow dosimetry. Cancer Biother Radiopharm 2005;20(2):126-40.
  • 14. Shen S1, DeNardo GL, Sgouros G, O'Donnell RT, DeNardo SJ.Practical determination of patient-specific marrow dose using radioactivity concentration in blood and body. J Nucl Med 1999;40:2102-6.
  • 15. Sorenson J.A., Phepls M. Physics in Nuclear Medicine 2004 Second Edition
  • 16. Demir M. Nükleer tıp fiziği ve klinik uygulamaları ders kitabı. Türkiye Kitabevi, İstanbul, 2008.
  • 17. Esser JP, Krenning EP, Teunissen JJ, Kooij PP, van Gameren AL, Bakker WH, Kwekkeboom DJ. Comparison of [177Lu-DOTA0,Tyr3] octreotate and [177Lu-DOTA0,Tyr3] octreotide: which peptide is preferable for PRRT? Eur J Nucl Med Mol Imaging 2006; 33:1346-51.
  • 18. Stubbs J. Anew mathematical model of gastrointestinal transit incorporating age- and gender-dependent physiological parameters. In Proc: Fifth International Radiopharmaceutical Dosimetry Symposium, Oak Ridge Associated Universities, Oak Ridge, TN, 1992:229-42.
  • 19. ICRP, 1979. Limits for Intakes of Radionuclides by Workers. ICRP Publication 30 (Part 1). Ann ICRP 2 (3- 4).
  • 20. ICRP, 1998. Radiation Dose to Patients from Radiopharmaceuticals (Addendum to ICRP Publication 53). ICRP Publication 80. Ann. ICRP 28 (3).
There are 20 citations in total.

Details

Other ID JA34HC58SJ
Journal Section Collection
Authors

Yasemin Parlak This is me

Mustafa Demir This is me

Publication Date December 1, 2013
Published in Issue Year 2013 Volume: 14 Issue: 3

Cite

EndNote Parlak Y, Demir M (December 1, 2013) Evaluation of Internal Dosimetry Methods in Nuclear Medicine Applications. Meandros Medical And Dental Journal 14 3 47–54.