Conference Paper
BibTex RIS Cite

AB-INITIO CALCULATIONS OF STRUCTURAL, ELECTRONIC AND MAGNETIC PROPERTIES OF LiRh2Si2

Year 2018, Volume: 4 Issue: 1, 7 - 14, 04.06.2018
https://doi.org/10.23884/mejs.2018.4.1.02

Abstract

Abstract In this study, we investigated the structural,
electronic and magnetic properties of the tetragonal LiRh2Si2
using the full-potential linearized augmented plane wave (FP-LAPW). The
structural calculations were performed with four exchange and correlation
potential (GGA- PBE, LDA-PW, GGA-WC and GGA-PBEsol), the electronic and
magnetic properties were performed with GGA-PBE implemented in Wien2k code. We
have obtained the cell dimensions, bulk modulus, and its pressure
derivative.  The calculated lattice
parameters are in good agreement with experimental and previous theoretical
results. We calculated cohesive energy as 4,95 eV/atom and LiRh2Si2
has good stability. Electron density plot of LiRh2Si2
shows strong covalent interactions between Si-Si and Rh-Si elements. We
performed spin polarize calculation of Density of States (DOS).  Electronic band chart that show LiRh2Si2
has metallic feature for both spin up and spin down configurations. The spin up
and spin down electronic band chart nearly symmetric so the compounds has nonmagnetic
feature. We searched pressure effect on magnetic moment of LiRh2Si2.
The magnetic moment of   LiRh2Si2
has been found 0.00075 ()  and it  decreased with increase of pressure. 

References

  • References
  • [1] Dinges, et al, New Ternary Silicide LiRh2Si2 - Structure and Bonding Peculiarities, Z. Anor. Chem. (2009), 635, pp.1894-1903.
  • [2] Langer, et al., 7Li and 29Si Solid State NMR and Chemical Bonding of La2Li2Si3 ChemInform, 43 (2012), 24.
  • [3] Baileya, et al., The Heusler phases LiRh2Si and LiRh2Ge: Synthesis, structure and properties, Journal of Solid State Chemistry 181 (2008), pp. 30–36.
  • [4] Steinberg, et al., Ternäre Silicide des Lithiums mit Yttrium oder Neodym mit modifizierter U3Si2-Struktur, Z. Naturforsch. 34b (1979), pp.1237-1239.
  • [5] Blaha, et al., An augmented plane wave+local orbitals program for calculating crystal properties, Vienna, Austria (2001), ISBN 3-9501031-1-2.
  • [6] Blochl, et al., Improved tetrahedron method for Brillouin zone integrations, Phys. Rev. B, 49 (1994), 23. 16223.[7] Perdew, et al., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 77 (1996) 18, 3865. [8] Perdew, J.P., Wang, Y.. Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, 45 (1992), 23, 3244.
  • [9] Wu, Z., Cohen, R.E., More accurate generalized gradient approximation for solids, Phys. Rev. B, 73 (2006), 23, 235116.
  • [10] Perdew, et al., Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces,. Phys. Rev. Lett., 100 (2008) 13, 136406.
  • [11] Murnaghan, F.D., Proceedings of the National Academy of Sciences of the United States of America 30 (1947), 244.
  • [12] Mosayeb et al., Electronic and optical properties of pentagonal-B2C monolayer: A first- principles calculation, Int. J. Mod. Phys. B, (2017), 31, 1750044.
  • [13] Erdinc, et al., Ab-initio calculations of physical properties of alkali chloride XCl (X = K, Rb and Li) under pressure, Computational Condensed Matter, (2015), 4, pp. 6-12.
Year 2018, Volume: 4 Issue: 1, 7 - 14, 04.06.2018
https://doi.org/10.23884/mejs.2018.4.1.02

Abstract

References

  • References
  • [1] Dinges, et al, New Ternary Silicide LiRh2Si2 - Structure and Bonding Peculiarities, Z. Anor. Chem. (2009), 635, pp.1894-1903.
  • [2] Langer, et al., 7Li and 29Si Solid State NMR and Chemical Bonding of La2Li2Si3 ChemInform, 43 (2012), 24.
  • [3] Baileya, et al., The Heusler phases LiRh2Si and LiRh2Ge: Synthesis, structure and properties, Journal of Solid State Chemistry 181 (2008), pp. 30–36.
  • [4] Steinberg, et al., Ternäre Silicide des Lithiums mit Yttrium oder Neodym mit modifizierter U3Si2-Struktur, Z. Naturforsch. 34b (1979), pp.1237-1239.
  • [5] Blaha, et al., An augmented plane wave+local orbitals program for calculating crystal properties, Vienna, Austria (2001), ISBN 3-9501031-1-2.
  • [6] Blochl, et al., Improved tetrahedron method for Brillouin zone integrations, Phys. Rev. B, 49 (1994), 23. 16223.[7] Perdew, et al., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 77 (1996) 18, 3865. [8] Perdew, J.P., Wang, Y.. Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, 45 (1992), 23, 3244.
  • [9] Wu, Z., Cohen, R.E., More accurate generalized gradient approximation for solids, Phys. Rev. B, 73 (2006), 23, 235116.
  • [10] Perdew, et al., Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces,. Phys. Rev. Lett., 100 (2008) 13, 136406.
  • [11] Murnaghan, F.D., Proceedings of the National Academy of Sciences of the United States of America 30 (1947), 244.
  • [12] Mosayeb et al., Electronic and optical properties of pentagonal-B2C monolayer: A first- principles calculation, Int. J. Mod. Phys. B, (2017), 31, 1750044.
  • [13] Erdinc, et al., Ab-initio calculations of physical properties of alkali chloride XCl (X = K, Rb and Li) under pressure, Computational Condensed Matter, (2015), 4, pp. 6-12.
There are 12 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Article
Authors

Gülten Kavak Balcı

Seyfettin Ayhan This is me

Publication Date June 4, 2018
Submission Date April 11, 2018
Acceptance Date May 4, 2018
Published in Issue Year 2018 Volume: 4 Issue: 1

Cite

IEEE G. Kavak Balcı and S. Ayhan, “AB-INITIO CALCULATIONS OF STRUCTURAL, ELECTRONIC AND MAGNETIC PROPERTIES OF LiRh2Si2”, MEJS, vol. 4, no. 1, pp. 7–14, 2018, doi: 10.23884/mejs.2018.4.1.02.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

TRDizinlogo_live-e1586763957746.png   ici2.png     scholar_logo_64dp.png    CenterLogo.png     crossref-logo-landscape-200.png  logo.png         logo1.jpg   DRJI_Logo.jpg  17826265674769  logo.png