Research Article
BibTex RIS Cite

Antibacterial Potential of Betel (Piper betle) Essential Oil Against Antibiotic-Resistant Serratia Isolates from Ready-to-Eat Seafood Salads

Year 2025, Volume: 11 Issue: 3, 302 - 311, 30.09.2025
https://doi.org/10.58626/memba.1700441

Abstract

This study aimed to evaluate the antibiotic resistance profiles of Serratia species isolated from ready-to-eat seafood salads sold in markets in Türkiye and the antimicrobial activity of Piper betle leaf essential oil against Serratia isolates. All seven different Serratia isolates identified at the molecular level were determined to be resistant to the antibiotic cephalothin. In addition, S. liquefaciens DKY-SS3 strain was found to be resistant to a total of four antibiotics, three of which were beta-lactam antibiotics (cephalothin, ampicillin, and amoxicillin-clavulanic acid) and one was the folic acid synthesis inhibitor trimethoprim-sulfamethoxazole. The resistance profiles obtained were found to be consistent with the intrinsic resistance mechanisms reported in the literature. In the context of alternative preservative strategies, the P. betle leaf essential oil used in the study showed strong antimicrobial activity against all Serratia strains. Inhibition zone diameters and low MIC/MBC values obtained in disk diffusion and microdilution tests confirmed the effectiveness of the oil. In the future, it is recommended that the applicability of this oil to food products, its effect on shelf life, and its reliability be investigated.

References

  • Anagnostopoulos, D. A., Syropoulou, F., Parlapani, F. F., Tsiartsafis, A., Exadactylos, A., Nychas, G. E., & Boziaris, I. S. (2023). Microbiota profile of filleted gilthead seabream (Sparus aurata) during storage at various conditions by 16S rRNA metabarcoding analysis. Food Research International, 164, 112312. https://doi.org/10.1016/j.foodres.2022.112312
  • Begrem, S., Jérôme, M., Leroi, F., Delbarre-Ladrat, C., Grovel, O., & Passerini, D. (2021). Genomic diversity of Serratia proteamaculans and Serratia liquefaciens predominant in seafood products and spoilage potential analyses. International Journal of Food Microbiology, 354, 109326. https://doi.org/10.1016/j.ijfoodmicro.2021.109326
  • Chen, B., Mei, J., & Xie, J. (2024). Effects of packaging methods and temperature variations on the quality and microbial diversity of grouper (Epinephelus lanceolatus) during cold storage. Food Bioscience, 60, 104315. https://doi.org/10.1016/j.fbio.2024.104315
  • Clinical and Laboratory Standards Institute (CLSI). (2020). Performance standards for antimicrobial susceptibility testing (30th ed.; CLSI supplement M100). Clinical and Laboratory Standards Institute. ISBN 978-1-68440-066-9.
  • Clinical and Laboratory Standards Institute (CLSI). (2024). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 12th ed.; M07. Clinical & Laboratory Standards Institute.
  • Grimont, P. A. D., & Grimont, F. (1978). The genus Serratia. Annual Review of Microbiology, 32, 221–248. https://doi.org/10.1146/annurev.mi.32.100178.001253
  • Jaffrès, E., Lalanne, V., Macé, S., Cornet, J., Cardinal, M., Sérot, T., Dousset, X., & Joffraud, J.-J. (2011). Sensory characteristics of spoilage and volatile compounds associated with bacteria isolated from cooked and peeled tropical shrimps using SPME–GC–MS analysis. International Journal of Food Microbiology, 147(3), 195–202. https://doi.org/10.1016/j.ijfoodmicro.2011.04.008
  • Krahulcová, M., Cverenkárová, K., Koreneková, J., Oravcová, A., Koščová, J., & Bírošová, L. (2023). Occurrence of antibiotic-resistant bacteria in fish and seafood from Slovak market. Foods, 12(21), 3912.
  • Labbate, M., Queck, S. Y., Koh, K. S., Rice, S. A., Givskov, M., & Kjelleberg, S. (2004). Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. Journal of Bacteriology, 186(3), 692–698. https://doi.org/10.1128/JB.186.3.692-698.2004
  • Nayaka, N. M. D. M. W., Sasadara, M. M. V., Sanjaya, D. A., Yuda, P. E. S. K., Dewi, N. L. K. A. A., Cahyaningsih, E., & Hartati, R. (2021). Piper betle (L): Recent review of antibacterial and antifungal properties, safety profiles, and commercial applications. Molecules, 26(8), 2321. https://doi.org/10.3390/molecules26082321
  • Oktariani, A. F., Ramona, Y., Sudaryatma, P. E., Dewi, I. A. M. M., & Shetty, K. (2022). Role of marine bacterial contaminants in histamine formation in seafood products: A review. Microorganisms, 10(6), 1197. https://doi.org/10.3390/microorganisms10061197
  • Pongsilp, N., & Nimnoi, P. (2023). Antibiotic resistance of Serratia marcescens isolated from aquatic animals: Phenotypic and genotypic characterization. Veterinary World, 16(12), 2615–2622.
  • Sánchez-Pérez, M., Andrade, A., Flores-Maldonado, O., de Anda-Mora, K., García-Contreras, R., Maeda, T., Becerril-García, M. A., & Tavares-Carreón, F. (2025). Genomic insights into pigmented Serratia marcescens strains isolated from patients in northeast Mexico. Microbial Pathogenesis, 203, 107456.
  • Sarkar, U., & Sawardekar, S. (2022). GC-MS analysis of extracted essential oil of Piper betle L. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10(11), 912–917.
  • Sandner-Miranda, L., Vinuesa, P., Cravioto, A., & Morales-Espinosa, R. (2018). The genomic basis of intrinsic and acquired antibiotic resistance in the genus Serratia. Frontiers in Microbiology, 9, 828. https://doi.org/10.3389/fmicb.2018.00828
  • Schwalbe, R., Steele-Moore, L., & Goodwin, A. C. (2007). Antimicrobial susceptibility testing protocols. CRC Press Taylor & Francis Group, Boca Raton, USA, pages 428.
  • Shymialevich, D., Błażejak, S., Średnicka, P., Cieślak, H., Ostrowska, A., Sokołowska, B., & Wójcicki, M. (2024). Biological characterization and genomic analysis of three novel Serratia- and Enterobacter-specific virulent phages. International Journal of Molecular Sciences, 25(11), 5944. https://doi.org/10.3390/ijms25115944
  • Srinivasan, R., Rama Devi, K., Kannappan, A., Pandian, S. K., & Ravi, A. V. (2016). Piper betle and its bioactive metabolite phytol mitigates quorum sensing mediated virulence factors and biofilm of nosocomial pathogen Serratia marcescens in vitro. Journal of Ethnopharmacology, 193, 592–603.
  • Tavares-Carreón, F., Sánchez-Pérez, M., Andrade, A., Flores-Maldonado, O., de Anda-Mora, K., García-Contreras, R., Maeda, T., & Becerril-García, M. A. (2025). Genomic and phenotypic features of pigmented clinical isolates of Serratia marcescens reveal environmental origin and virulence potential. Microbial Pathogenesis, 203, 107456.
  • Tran, V. T., Nguyen, T. B., Nguyen, H. C., Do, N. H., & Le, P. K. (2023). Recent applications of natural bioactive compounds from Piper betle (L.) leaves in food preservation. Food Control, 154, 110026. https://doi.org/10.1016/j.foodcont.2023.110026
  • Turgis, M., Vu, K. D., Dupont, C., & Lacroix, M. (2012). Combined antimicrobial effect of essential oils and bacteriocins against foodborne pathogens and food spoilage bacteria. Food Research International, 48(2), 696-702. https://doi.org/10.1016/j.foodres.2012.06.016
  • Valle, D. L., Cabrera, E. C., Puzon, J. J. M., & Rivera, W. L. (2016). Antimicrobial activities of methanol, ethanol and supercritical CO₂ extracts of Philippine Piper betle L. on clinical isolates of Gram-positive and Gram-negative bacteria with transferable multiple drug resistance. PLoS ONE, 11(1), e0146349.

Antibacterial Potential of Betel (Piper betle) Essential Oil Against Antibiotic-Resistant Serratia Isolates from Ready-to-Eat Seafood Salads

Year 2025, Volume: 11 Issue: 3, 302 - 311, 30.09.2025
https://doi.org/10.58626/memba.1700441

Abstract

This study aimed to evaluate the antibiotic resistance profiles of Serratia species isolated from ready-to-eat seafood salads sold in markets in Türkiye and the antimicrobial activity of Piper betle leaf essential oil against Serratia isolates. All seven different Serratia isolates identified at the molecular level were determined to be resistant to the antibiotic cephalothin. In addition, S. liquefaciens DKY-SS3 strain was found to be resistant to a total of four antibiotics, three of which were beta-lactam antibiotics (cephalothin, ampicillin, and amoxicillin-clavulanic acid) and one was the folic acid synthesis inhibitor trimethoprim-sulfamethoxazole. The resistance profiles obtained were found to be consistent with the intrinsic resistance mechanisms reported in the literature. In the context of alternative preservative strategies, the P. betle leaf essential oil used in the study showed strong antimicrobial activity against all Serratia strains. Inhibition zone diameters and low MIC/MBC values obtained in disk diffusion and microdilution tests confirmed the effectiveness of the oil. In the future, it is recommended that the applicability of this oil to food products, its effect on shelf life, and its reliability be investigated.

References

  • Anagnostopoulos, D. A., Syropoulou, F., Parlapani, F. F., Tsiartsafis, A., Exadactylos, A., Nychas, G. E., & Boziaris, I. S. (2023). Microbiota profile of filleted gilthead seabream (Sparus aurata) during storage at various conditions by 16S rRNA metabarcoding analysis. Food Research International, 164, 112312. https://doi.org/10.1016/j.foodres.2022.112312
  • Begrem, S., Jérôme, M., Leroi, F., Delbarre-Ladrat, C., Grovel, O., & Passerini, D. (2021). Genomic diversity of Serratia proteamaculans and Serratia liquefaciens predominant in seafood products and spoilage potential analyses. International Journal of Food Microbiology, 354, 109326. https://doi.org/10.1016/j.ijfoodmicro.2021.109326
  • Chen, B., Mei, J., & Xie, J. (2024). Effects of packaging methods and temperature variations on the quality and microbial diversity of grouper (Epinephelus lanceolatus) during cold storage. Food Bioscience, 60, 104315. https://doi.org/10.1016/j.fbio.2024.104315
  • Clinical and Laboratory Standards Institute (CLSI). (2020). Performance standards for antimicrobial susceptibility testing (30th ed.; CLSI supplement M100). Clinical and Laboratory Standards Institute. ISBN 978-1-68440-066-9.
  • Clinical and Laboratory Standards Institute (CLSI). (2024). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 12th ed.; M07. Clinical & Laboratory Standards Institute.
  • Grimont, P. A. D., & Grimont, F. (1978). The genus Serratia. Annual Review of Microbiology, 32, 221–248. https://doi.org/10.1146/annurev.mi.32.100178.001253
  • Jaffrès, E., Lalanne, V., Macé, S., Cornet, J., Cardinal, M., Sérot, T., Dousset, X., & Joffraud, J.-J. (2011). Sensory characteristics of spoilage and volatile compounds associated with bacteria isolated from cooked and peeled tropical shrimps using SPME–GC–MS analysis. International Journal of Food Microbiology, 147(3), 195–202. https://doi.org/10.1016/j.ijfoodmicro.2011.04.008
  • Krahulcová, M., Cverenkárová, K., Koreneková, J., Oravcová, A., Koščová, J., & Bírošová, L. (2023). Occurrence of antibiotic-resistant bacteria in fish and seafood from Slovak market. Foods, 12(21), 3912.
  • Labbate, M., Queck, S. Y., Koh, K. S., Rice, S. A., Givskov, M., & Kjelleberg, S. (2004). Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. Journal of Bacteriology, 186(3), 692–698. https://doi.org/10.1128/JB.186.3.692-698.2004
  • Nayaka, N. M. D. M. W., Sasadara, M. M. V., Sanjaya, D. A., Yuda, P. E. S. K., Dewi, N. L. K. A. A., Cahyaningsih, E., & Hartati, R. (2021). Piper betle (L): Recent review of antibacterial and antifungal properties, safety profiles, and commercial applications. Molecules, 26(8), 2321. https://doi.org/10.3390/molecules26082321
  • Oktariani, A. F., Ramona, Y., Sudaryatma, P. E., Dewi, I. A. M. M., & Shetty, K. (2022). Role of marine bacterial contaminants in histamine formation in seafood products: A review. Microorganisms, 10(6), 1197. https://doi.org/10.3390/microorganisms10061197
  • Pongsilp, N., & Nimnoi, P. (2023). Antibiotic resistance of Serratia marcescens isolated from aquatic animals: Phenotypic and genotypic characterization. Veterinary World, 16(12), 2615–2622.
  • Sánchez-Pérez, M., Andrade, A., Flores-Maldonado, O., de Anda-Mora, K., García-Contreras, R., Maeda, T., Becerril-García, M. A., & Tavares-Carreón, F. (2025). Genomic insights into pigmented Serratia marcescens strains isolated from patients in northeast Mexico. Microbial Pathogenesis, 203, 107456.
  • Sarkar, U., & Sawardekar, S. (2022). GC-MS analysis of extracted essential oil of Piper betle L. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10(11), 912–917.
  • Sandner-Miranda, L., Vinuesa, P., Cravioto, A., & Morales-Espinosa, R. (2018). The genomic basis of intrinsic and acquired antibiotic resistance in the genus Serratia. Frontiers in Microbiology, 9, 828. https://doi.org/10.3389/fmicb.2018.00828
  • Schwalbe, R., Steele-Moore, L., & Goodwin, A. C. (2007). Antimicrobial susceptibility testing protocols. CRC Press Taylor & Francis Group, Boca Raton, USA, pages 428.
  • Shymialevich, D., Błażejak, S., Średnicka, P., Cieślak, H., Ostrowska, A., Sokołowska, B., & Wójcicki, M. (2024). Biological characterization and genomic analysis of three novel Serratia- and Enterobacter-specific virulent phages. International Journal of Molecular Sciences, 25(11), 5944. https://doi.org/10.3390/ijms25115944
  • Srinivasan, R., Rama Devi, K., Kannappan, A., Pandian, S. K., & Ravi, A. V. (2016). Piper betle and its bioactive metabolite phytol mitigates quorum sensing mediated virulence factors and biofilm of nosocomial pathogen Serratia marcescens in vitro. Journal of Ethnopharmacology, 193, 592–603.
  • Tavares-Carreón, F., Sánchez-Pérez, M., Andrade, A., Flores-Maldonado, O., de Anda-Mora, K., García-Contreras, R., Maeda, T., & Becerril-García, M. A. (2025). Genomic and phenotypic features of pigmented clinical isolates of Serratia marcescens reveal environmental origin and virulence potential. Microbial Pathogenesis, 203, 107456.
  • Tran, V. T., Nguyen, T. B., Nguyen, H. C., Do, N. H., & Le, P. K. (2023). Recent applications of natural bioactive compounds from Piper betle (L.) leaves in food preservation. Food Control, 154, 110026. https://doi.org/10.1016/j.foodcont.2023.110026
  • Turgis, M., Vu, K. D., Dupont, C., & Lacroix, M. (2012). Combined antimicrobial effect of essential oils and bacteriocins against foodborne pathogens and food spoilage bacteria. Food Research International, 48(2), 696-702. https://doi.org/10.1016/j.foodres.2012.06.016
  • Valle, D. L., Cabrera, E. C., Puzon, J. J. M., & Rivera, W. L. (2016). Antimicrobial activities of methanol, ethanol and supercritical CO₂ extracts of Philippine Piper betle L. on clinical isolates of Gram-positive and Gram-negative bacteria with transferable multiple drug resistance. PLoS ONE, 11(1), e0146349.
There are 22 citations in total.

Details

Primary Language English
Subjects Fisheries Technologies
Journal Section Research Article
Authors

Dilek Kahraman Yılmaz 0000-0002-9626-5446

Melike Avdan This is me 0009-0001-2547-9826

Publication Date September 30, 2025
Submission Date May 16, 2025
Acceptance Date July 2, 2025
Published in Issue Year 2025 Volume: 11 Issue: 3

Cite

APA Kahraman Yılmaz, D., & Avdan, M. (2025). Antibacterial Potential of Betel (Piper betle) Essential Oil Against Antibiotic-Resistant Serratia Isolates from Ready-to-Eat Seafood Salads. MEMBA Su Bilimleri Dergisi, 11(3), 302-311. https://doi.org/10.58626/memba.1700441
AMA Kahraman Yılmaz D, Avdan M. Antibacterial Potential of Betel (Piper betle) Essential Oil Against Antibiotic-Resistant Serratia Isolates from Ready-to-Eat Seafood Salads. MEMBA Su Bilimleri Dergisi. September 2025;11(3):302-311. doi:10.58626/memba.1700441
Chicago Kahraman Yılmaz, Dilek, and Melike Avdan. “Antibacterial Potential of Betel (Piper Betle) Essential Oil Against Antibiotic-Resistant Serratia Isolates from Ready-to-Eat Seafood Salads”. MEMBA Su Bilimleri Dergisi 11, no. 3 (September 2025): 302-11. https://doi.org/10.58626/memba.1700441.
EndNote Kahraman Yılmaz D, Avdan M (September 1, 2025) Antibacterial Potential of Betel (Piper betle) Essential Oil Against Antibiotic-Resistant Serratia Isolates from Ready-to-Eat Seafood Salads. MEMBA Su Bilimleri Dergisi 11 3 302–311.
IEEE D. Kahraman Yılmaz and M. Avdan, “Antibacterial Potential of Betel (Piper betle) Essential Oil Against Antibiotic-Resistant Serratia Isolates from Ready-to-Eat Seafood Salads”, MEMBA Su Bilimleri Dergisi, vol. 11, no. 3, pp. 302–311, 2025, doi: 10.58626/memba.1700441.
ISNAD Kahraman Yılmaz, Dilek - Avdan, Melike. “Antibacterial Potential of Betel (Piper Betle) Essential Oil Against Antibiotic-Resistant Serratia Isolates from Ready-to-Eat Seafood Salads”. MEMBA Su Bilimleri Dergisi 11/3 (September2025), 302-311. https://doi.org/10.58626/memba.1700441.
JAMA Kahraman Yılmaz D, Avdan M. Antibacterial Potential of Betel (Piper betle) Essential Oil Against Antibiotic-Resistant Serratia Isolates from Ready-to-Eat Seafood Salads. MEMBA Su Bilimleri Dergisi. 2025;11:302–311.
MLA Kahraman Yılmaz, Dilek and Melike Avdan. “Antibacterial Potential of Betel (Piper Betle) Essential Oil Against Antibiotic-Resistant Serratia Isolates from Ready-to-Eat Seafood Salads”. MEMBA Su Bilimleri Dergisi, vol. 11, no. 3, 2025, pp. 302-11, doi:10.58626/memba.1700441.
Vancouver Kahraman Yılmaz D, Avdan M. Antibacterial Potential of Betel (Piper betle) Essential Oil Against Antibiotic-Resistant Serratia Isolates from Ready-to-Eat Seafood Salads. MEMBA Su Bilimleri Dergisi. 2025;11(3):302-11.