Research Article
BibTex RIS Cite

3D reconstruction of foot metatarsal bones of women using CT images

Year 2024, , 32 - 38, 15.06.2024
https://doi.org/10.53093/mephoj.1435928

Abstract

Bone morphology is a fundamental factor in human anatomy. However, foot and ankle bones have yet to be adequately evaluated in 3-dimensional. It is essential to present the biometric data of anatomical structures. This study formed 3D models of the metatarsal bones of the feet of young women using image processing techniques to examine biometric measurements and determine morphology on these 3D models. This study investigated bone lengths in the metatarsal bones of women feet in Türkiye. A total of ten young female subjects were included as the test group to measure the lengths of their foot metatarsal bones using CT (Computed Tomography) scans, and 20 feet (left/right) were examined. The parameters that were used for the analyses were detector collimation of 64x0.5 mm, section thickness of 0.5 mm, current of 100 mA, tube voltage of 120 kVp, and pixel spacing of 512x512 pixels with a monochrome resolution providing 16-bit gray levels. CT images were processed, and a 3D metatarsal reconstruction was gathered. Then, the biometric measurements were calculated on this 3D model. For the lengths of the volunteers' right/left foot metatarsal bones, statistically significant differences were calculated using a one-sample t-test. For the female metatarsal bones of the left and right feet, statistically significant differences in length were calculated on 3D models. The mean results of the metatarsal length measurements were MT1(metatarsal): 59.52±1.42 mm, MT2: 70.45±1.82 mm, MT3: 66.25±1.82 mm, MT4: 65.12±1.81 mm and MT5: 63.63±1.81 mm. The level of statistical significance was accepted as p <0.05 for the one-sample t-test conducted for each metatarsal bone. The lengths of the right foot metatarsal bones were different from those of the left foot metatarsal bones in the sample. However, this difference was approximately one-tenth of a millimeter. The shortest bone was MT1, and the longest bone was MT2. These measurements are consistent with the anatomical information in the literature. The 3D models from the CT images and the biometric measurements of the metatarsal bones were found to be reliable and accurate.

Ethical Statement

Ministry of Health and Konya Clinical Research Ethics Committee (Decision No. 004,08/01/2010) Data is free/open

References

  • Spector, F. C., Karlin, J. M., Scurran, B. L., & Silvani, S. L. (1984). Lesser metatarsal fractures. Incidence, management, and review. Journal of the American Podiatric Medical Association, 74(6), 259-264. https://doi.org/10.7547/87507315-74-6-259
  • Polzer, H., Polzer, S., Mutschler, W., & Prall, W. C. (2012). Acute fractures to the proximal fifth metatarsal bone: development of classification and treatment recommendations based on the current evidence. Injury, 43(10), 1626-1632. https://doi.org/10.1016/j.injury.2012.03.010
  • Cakir, H., Van Vliet-Koppert, S. T., Van Lieshout, E. M. M., De Vries, M. R., Van Der Elst, M., & Schepers, T. (2011). Demographics and outcome of metatarsal fractures. Archives of orthopaedic and trauma surgery, 131, 241-245. https://doi.org/10.1007/s00402-010-1164-6
  • Beddard, L., Roslee, C., & Kelsall, N. (2024). Acute and stress fractures of the metatarsals in athletes. Orthopaedics and Trauma, 38(1), 46-50. https://doi.org/10.1016/j.mporth.2023.11.008
  • Herterich, V., Hofmann, L., Böcker, W., Polzer, H., & Baumbach, S. F. (2023). Acute, isolated fractures of the metatarsal bones: an epidemiologic study. Archives of Orthopaedic and Trauma Surgery, 143(4), 1939-1945. https://doi.org/10.1007/s00402-022-04396-3
  • Macintyre, J., & Joy, E. (2000). Foot and ankle injuries in dance. Clinics in Sports Medicine, 19(2), 351-368. https://doi.org/10.1016/S0278-5919(05)70208-8
  • Lee, H. A., Batley, M. G., Krakow, A., Buczek, M. J., Sarkar, S., Talwar, D., ... & Davidson, R. S. (2023). New Classification for Pediatric Proximal Fifth Metatarsal Fractures. The Journal of Foot and Ankle Surgery, 63(2), 267-274. https://doi.org/10.1053/j.jfas.2023.11.015
  • Prisk, V. R., O'Loughlin, P. F., & Kennedy, J. G. (2008). Forefoot injuries in dancers. Clinics in sports Medicine, 27(2), 305-320. https://doi.org/10.1016/j.csm.2007.12.005
  • Goulart, M., O'Malley, M. J., Hodgkins, C. W., & Charlton, T. P. (2008). Foot and ankle fractures in dancers. Clinics in sports medicine, 27(2), 295-304. https://doi.org/10.1016/j.csm.2008.01.002
  • Van Dijk, C. N., & Marti, R. K. (1999). Traumatic, post-traumatic and over-use injuries in ballet: with special emphasis on the foot and ankle. Foot and ankle surgery, 5(1), 1-8. https://doi.org/10.1046/j.1460-9584.1999.51122.x
  • Dygut, J., & Piwowar, M. (2022). Muscular Systems and Their Influence on Foot Arches and Toes Alignment—Towards the Proper Diagnosis and Treatment of Hallux Valgus. Diagnostics, 12(12), 2945. https://doi.org/10.3390/diagnostics12122945
  • Barg, A., Harmer, J. R., Presson, A. P., Zhang, C., Lackey, M., & Saltzman, C. L. (2018). Unfavorable outcomes following surgical treatment of hallux valgus deformity: a systematic literature review. JBJS, 100(18), 1563-1573. https://doi.org/10.2106/JBJS.17.00975
  • Cruz, E. P., Sanhudo, J. A. V., Iserhard, W. B., Eggers, E. K. M., Camargo, L. M., & de Freitas Spinelli, L. (2024). Midfoot width changes after first metatarsal osteotomy in hallux valgus surgery: a biomechanical effect?. The Foot, 102070. https://doi.org/10.1016/j.foot.2024.102070
  • Khurana, A., Alexander, B., Pitts, C., Brahmbhatt, A., Cage, B., Greco, E., ... & Shah, A. B. (2020). Predictors of malreduction in zone II and III Fifth metatarsal fractures fixed with an intramedullary screw. Foot & Ankle International, 41(12), 1537-1545. https://doi.org/10.1177/10711007209474
  • Černochová, P., Kaňovská, K., Kršek, P., & Krupa, P. (2005). Application of geometric biomodels for autotransplantation of impacted canines. World Journal of Orthodontics, 1.
  • Krupa, P., Kršek, P., Černochová, P., & Molitor, M. (2004). 3-D real modelling and CT biomodels application in facial surgery. In Neuroradiology. Berlin: European Society of Neuroradiology, 141, 1. ISBN 0028-3940.
  • Krupa, P., Krsek, P., Javorník, M., Dostál, O., Srnec, R., Usvald, D., ... & Necas, A. (2007). Use of 3D geometry modelling of osteochondrosis-like iatrogenic lesions as a template for press-and-fit scaffold seeded with mesenchymal stem cells. Physiological research, 56(1), 107-114. https://doi.org/10.33549/physiolres.931308
  • Stebbins, J., Harrington, M., Thompson, N., Zavatsky, A., Theologis, T., Repeatability of a model for measuring multi-segment foot kinematics in children. Gait & Posture 2006; 23:4- 401–410. https://doi.org/10.1016/j.gaitpost.2005.03.002
  • Gutekunst, D. J., Liu, L., Ju, T., Prior, F. W., & Sinacore, D. R. (2013). Reliability of clinically relevant 3D foot bone angles from quantitative computed tomography. Journal of foot and ankle research, 6, 1-9. https://doi.org/10.1186/1757-1146-6-38
  • Eckstein, F., Cicuttini, F., Raynauld, J. P., Waterton, J. C., & Peterfy, C. (2006). Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osteoarthritis and cartilage, 14, 46-75. https://doi.org/10.1016/j.joca.2006.02.026
  • Qiang, M., Chen, Y., Zhang, K., Li, H., & Dai, H. (2014). Measurement of three-dimensional morphological characteristics of the calcaneus using CT image post-processing. Journal of foot and ankle research, 7, 1-9. https://doi.org/10.1186/1757-1146-7-19
  • Stindel, E., Udupa, J. K., Hirsch, B. E., Odhner, D., & Couture, C. (1999). 3D MR image analysis of the morphology of the rear foot: application to classification of bones. Computerized medical imaging and graphics, 23(2), 75-83. https://doi.org/10.1016/S0895-6111(98)00070-6
  • Mori, K., Hahn, H. K. (2019). Medical Imaging 2019: Computer-Aided Diagnosis, San Diego, California, United States, 16-21 February 2019. SPIE Proceedings 10950.
  • Park, H. J., Kim, S. M., La Yun, B., Jang, M., Kim, B., Jang, J. Y., ... & Lee, S. H. (2019). A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of breast masses on ultrasound: added value for the inexperienced breast radiologist. Medicine, 98(3), e14146. https://doi.org/10.1097/MD.0000000000014146
  • Ben-Cohen, A., & Greenspan, H. (2020). Liver lesion detection in CT using deep learning techniques. In Handbook of medical image computing and computer assisted intervention (pp. 65-90). Academic Press. https://doi.org/10.1016/B978-0-12-816176-0.00008-9
  • Gonzalez, R. C. (2009). Digital image processing. Pearson Education İndia.
  • Beimers, L., Tuijthof, G. J. M., Blankevoort, L., Jonges, R., Maas, M., & van Dijk, C. N. (2008). In-vivo range of motion of the subtalar joint using computed tomography. Journal of biomechanics, 41(7), 1390-1397. https://doi.org/10.1016/j.jbiomech.2008.02.020
  • Mochimaru, M., Kouchi, M., & Dohi, M. (2000). Analysis of 3-D human foot forms using the free form deformation method and its application in grading shoe lasts. Ergonomics, 43(9), 1301-1313. https://doi.org/10.1080/001401300421752
  • Nilsson, M. K., Friis, R., Michaelsen, M. S., Jakobsen, P. A., & Nielsen, R. O. (2012). Classification of the height and flexibility of the medial longitudinal arch of the foot. Journal of foot and ankle research, 5, 1-9. https://doi.org/10.1186/1757-1146-5-3
  • Rodrigo, A. S., Goonetilleke, R. S., & Witana, C. P. (2012). Model based foot shape classification using 2D foot outlines. Computer-Aided Design, 44(1), 48-55. https://doi.org/10.1016/j.cad.2011.01.005
  • Luo, X. D., Xue, C. H., & Li, Y. (2017). Study on the foot shape characteristics of the elderly in China. The Foot, 33, 68-75. https://doi.org/10.1016/j.foot.2017.04.004
  • Reis, H. C., Bayram, B., & Seker, D. Z. (2016). A semiautomatic segmentation approach to biometric measurement of the talus bone of sedentary women and ballerinas using CT images. Asian Biomedicine, 10(5), 455-459. https://doi.org/10.5372/1905-7415.1005.508
  • Goodyear, M. D., Krleza-Jeric, K., & Lemmens, T. (2007). The declaration of Helsinki. British Medical Journal, 335(7621), 624-625. https://doi.org/10.1136/bmj.39339.610000.BE
  • https://www.turkrad.org.tr/
  • Doğan, S., & Altan, M. O. (2010). CT, MR kesitleri ve dijital görüntüler kullanılarak tümörlerin belirlenmesi. İTÜDERGİSİ/d, 2(4), 45-55
Year 2024, , 32 - 38, 15.06.2024
https://doi.org/10.53093/mephoj.1435928

Abstract

References

  • Spector, F. C., Karlin, J. M., Scurran, B. L., & Silvani, S. L. (1984). Lesser metatarsal fractures. Incidence, management, and review. Journal of the American Podiatric Medical Association, 74(6), 259-264. https://doi.org/10.7547/87507315-74-6-259
  • Polzer, H., Polzer, S., Mutschler, W., & Prall, W. C. (2012). Acute fractures to the proximal fifth metatarsal bone: development of classification and treatment recommendations based on the current evidence. Injury, 43(10), 1626-1632. https://doi.org/10.1016/j.injury.2012.03.010
  • Cakir, H., Van Vliet-Koppert, S. T., Van Lieshout, E. M. M., De Vries, M. R., Van Der Elst, M., & Schepers, T. (2011). Demographics and outcome of metatarsal fractures. Archives of orthopaedic and trauma surgery, 131, 241-245. https://doi.org/10.1007/s00402-010-1164-6
  • Beddard, L., Roslee, C., & Kelsall, N. (2024). Acute and stress fractures of the metatarsals in athletes. Orthopaedics and Trauma, 38(1), 46-50. https://doi.org/10.1016/j.mporth.2023.11.008
  • Herterich, V., Hofmann, L., Böcker, W., Polzer, H., & Baumbach, S. F. (2023). Acute, isolated fractures of the metatarsal bones: an epidemiologic study. Archives of Orthopaedic and Trauma Surgery, 143(4), 1939-1945. https://doi.org/10.1007/s00402-022-04396-3
  • Macintyre, J., & Joy, E. (2000). Foot and ankle injuries in dance. Clinics in Sports Medicine, 19(2), 351-368. https://doi.org/10.1016/S0278-5919(05)70208-8
  • Lee, H. A., Batley, M. G., Krakow, A., Buczek, M. J., Sarkar, S., Talwar, D., ... & Davidson, R. S. (2023). New Classification for Pediatric Proximal Fifth Metatarsal Fractures. The Journal of Foot and Ankle Surgery, 63(2), 267-274. https://doi.org/10.1053/j.jfas.2023.11.015
  • Prisk, V. R., O'Loughlin, P. F., & Kennedy, J. G. (2008). Forefoot injuries in dancers. Clinics in sports Medicine, 27(2), 305-320. https://doi.org/10.1016/j.csm.2007.12.005
  • Goulart, M., O'Malley, M. J., Hodgkins, C. W., & Charlton, T. P. (2008). Foot and ankle fractures in dancers. Clinics in sports medicine, 27(2), 295-304. https://doi.org/10.1016/j.csm.2008.01.002
  • Van Dijk, C. N., & Marti, R. K. (1999). Traumatic, post-traumatic and over-use injuries in ballet: with special emphasis on the foot and ankle. Foot and ankle surgery, 5(1), 1-8. https://doi.org/10.1046/j.1460-9584.1999.51122.x
  • Dygut, J., & Piwowar, M. (2022). Muscular Systems and Their Influence on Foot Arches and Toes Alignment—Towards the Proper Diagnosis and Treatment of Hallux Valgus. Diagnostics, 12(12), 2945. https://doi.org/10.3390/diagnostics12122945
  • Barg, A., Harmer, J. R., Presson, A. P., Zhang, C., Lackey, M., & Saltzman, C. L. (2018). Unfavorable outcomes following surgical treatment of hallux valgus deformity: a systematic literature review. JBJS, 100(18), 1563-1573. https://doi.org/10.2106/JBJS.17.00975
  • Cruz, E. P., Sanhudo, J. A. V., Iserhard, W. B., Eggers, E. K. M., Camargo, L. M., & de Freitas Spinelli, L. (2024). Midfoot width changes after first metatarsal osteotomy in hallux valgus surgery: a biomechanical effect?. The Foot, 102070. https://doi.org/10.1016/j.foot.2024.102070
  • Khurana, A., Alexander, B., Pitts, C., Brahmbhatt, A., Cage, B., Greco, E., ... & Shah, A. B. (2020). Predictors of malreduction in zone II and III Fifth metatarsal fractures fixed with an intramedullary screw. Foot & Ankle International, 41(12), 1537-1545. https://doi.org/10.1177/10711007209474
  • Černochová, P., Kaňovská, K., Kršek, P., & Krupa, P. (2005). Application of geometric biomodels for autotransplantation of impacted canines. World Journal of Orthodontics, 1.
  • Krupa, P., Kršek, P., Černochová, P., & Molitor, M. (2004). 3-D real modelling and CT biomodels application in facial surgery. In Neuroradiology. Berlin: European Society of Neuroradiology, 141, 1. ISBN 0028-3940.
  • Krupa, P., Krsek, P., Javorník, M., Dostál, O., Srnec, R., Usvald, D., ... & Necas, A. (2007). Use of 3D geometry modelling of osteochondrosis-like iatrogenic lesions as a template for press-and-fit scaffold seeded with mesenchymal stem cells. Physiological research, 56(1), 107-114. https://doi.org/10.33549/physiolres.931308
  • Stebbins, J., Harrington, M., Thompson, N., Zavatsky, A., Theologis, T., Repeatability of a model for measuring multi-segment foot kinematics in children. Gait & Posture 2006; 23:4- 401–410. https://doi.org/10.1016/j.gaitpost.2005.03.002
  • Gutekunst, D. J., Liu, L., Ju, T., Prior, F. W., & Sinacore, D. R. (2013). Reliability of clinically relevant 3D foot bone angles from quantitative computed tomography. Journal of foot and ankle research, 6, 1-9. https://doi.org/10.1186/1757-1146-6-38
  • Eckstein, F., Cicuttini, F., Raynauld, J. P., Waterton, J. C., & Peterfy, C. (2006). Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osteoarthritis and cartilage, 14, 46-75. https://doi.org/10.1016/j.joca.2006.02.026
  • Qiang, M., Chen, Y., Zhang, K., Li, H., & Dai, H. (2014). Measurement of three-dimensional morphological characteristics of the calcaneus using CT image post-processing. Journal of foot and ankle research, 7, 1-9. https://doi.org/10.1186/1757-1146-7-19
  • Stindel, E., Udupa, J. K., Hirsch, B. E., Odhner, D., & Couture, C. (1999). 3D MR image analysis of the morphology of the rear foot: application to classification of bones. Computerized medical imaging and graphics, 23(2), 75-83. https://doi.org/10.1016/S0895-6111(98)00070-6
  • Mori, K., Hahn, H. K. (2019). Medical Imaging 2019: Computer-Aided Diagnosis, San Diego, California, United States, 16-21 February 2019. SPIE Proceedings 10950.
  • Park, H. J., Kim, S. M., La Yun, B., Jang, M., Kim, B., Jang, J. Y., ... & Lee, S. H. (2019). A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of breast masses on ultrasound: added value for the inexperienced breast radiologist. Medicine, 98(3), e14146. https://doi.org/10.1097/MD.0000000000014146
  • Ben-Cohen, A., & Greenspan, H. (2020). Liver lesion detection in CT using deep learning techniques. In Handbook of medical image computing and computer assisted intervention (pp. 65-90). Academic Press. https://doi.org/10.1016/B978-0-12-816176-0.00008-9
  • Gonzalez, R. C. (2009). Digital image processing. Pearson Education İndia.
  • Beimers, L., Tuijthof, G. J. M., Blankevoort, L., Jonges, R., Maas, M., & van Dijk, C. N. (2008). In-vivo range of motion of the subtalar joint using computed tomography. Journal of biomechanics, 41(7), 1390-1397. https://doi.org/10.1016/j.jbiomech.2008.02.020
  • Mochimaru, M., Kouchi, M., & Dohi, M. (2000). Analysis of 3-D human foot forms using the free form deformation method and its application in grading shoe lasts. Ergonomics, 43(9), 1301-1313. https://doi.org/10.1080/001401300421752
  • Nilsson, M. K., Friis, R., Michaelsen, M. S., Jakobsen, P. A., & Nielsen, R. O. (2012). Classification of the height and flexibility of the medial longitudinal arch of the foot. Journal of foot and ankle research, 5, 1-9. https://doi.org/10.1186/1757-1146-5-3
  • Rodrigo, A. S., Goonetilleke, R. S., & Witana, C. P. (2012). Model based foot shape classification using 2D foot outlines. Computer-Aided Design, 44(1), 48-55. https://doi.org/10.1016/j.cad.2011.01.005
  • Luo, X. D., Xue, C. H., & Li, Y. (2017). Study on the foot shape characteristics of the elderly in China. The Foot, 33, 68-75. https://doi.org/10.1016/j.foot.2017.04.004
  • Reis, H. C., Bayram, B., & Seker, D. Z. (2016). A semiautomatic segmentation approach to biometric measurement of the talus bone of sedentary women and ballerinas using CT images. Asian Biomedicine, 10(5), 455-459. https://doi.org/10.5372/1905-7415.1005.508
  • Goodyear, M. D., Krleza-Jeric, K., & Lemmens, T. (2007). The declaration of Helsinki. British Medical Journal, 335(7621), 624-625. https://doi.org/10.1136/bmj.39339.610000.BE
  • https://www.turkrad.org.tr/
  • Doğan, S., & Altan, M. O. (2010). CT, MR kesitleri ve dijital görüntüler kullanılarak tümörlerin belirlenmesi. İTÜDERGİSİ/d, 2(4), 45-55
There are 35 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing
Journal Section Research Articles
Authors

Hatice Çatal Reis 0000-0003-2696-2446

Early Pub Date March 16, 2024
Publication Date June 15, 2024
Submission Date February 12, 2024
Acceptance Date March 14, 2024
Published in Issue Year 2024

Cite

APA Reis, H. Ç. (2024). 3D reconstruction of foot metatarsal bones of women using CT images. Mersin Photogrammetry Journal, 6(1), 32-38. https://doi.org/10.53093/mephoj.1435928
AMA Reis HÇ. 3D reconstruction of foot metatarsal bones of women using CT images. Mersin Photogrammetry Journal. June 2024;6(1):32-38. doi:10.53093/mephoj.1435928
Chicago Reis, Hatice Çatal. “3D Reconstruction of Foot Metatarsal Bones of Women Using CT Images”. Mersin Photogrammetry Journal 6, no. 1 (June 2024): 32-38. https://doi.org/10.53093/mephoj.1435928.
EndNote Reis HÇ (June 1, 2024) 3D reconstruction of foot metatarsal bones of women using CT images. Mersin Photogrammetry Journal 6 1 32–38.
IEEE H. Ç. Reis, “3D reconstruction of foot metatarsal bones of women using CT images”, Mersin Photogrammetry Journal, vol. 6, no. 1, pp. 32–38, 2024, doi: 10.53093/mephoj.1435928.
ISNAD Reis, Hatice Çatal. “3D Reconstruction of Foot Metatarsal Bones of Women Using CT Images”. Mersin Photogrammetry Journal 6/1 (June 2024), 32-38. https://doi.org/10.53093/mephoj.1435928.
JAMA Reis HÇ. 3D reconstruction of foot metatarsal bones of women using CT images. Mersin Photogrammetry Journal. 2024;6:32–38.
MLA Reis, Hatice Çatal. “3D Reconstruction of Foot Metatarsal Bones of Women Using CT Images”. Mersin Photogrammetry Journal, vol. 6, no. 1, 2024, pp. 32-38, doi:10.53093/mephoj.1435928.
Vancouver Reis HÇ. 3D reconstruction of foot metatarsal bones of women using CT images. Mersin Photogrammetry Journal. 2024;6(1):32-8.