Derleme
BibTex RIS Kaynak Göster

Antituberculosis drugs used in the treatment of tuberculosis

Yıl 2023, Cilt: 16 Sayı: 3, 525 - 542, 18.12.2023

Öz

Tuberculosis (TB) is a chronic, granulomatous bacterial disease with different clinical manifestations caused by Mycobacterium tuberculosis (M. tuberculosis). TB continues to be a public health problem that still maintains its importance today. Given the recent years of co-infection with HIV/AIDS and multidrug-resistant (MDR) cases, treatment for TB disease is available in combination with multiple anti-TB drugs for at least six months. Current first-line (primary) treatments for TB, administration of a combination of isoniazid (INH), rifampicin (RIF), pyrazinamide(PZA), and ethambutol(EMB) during the first two months and then based on INH and RIF treatment for a duration of more than four to seven months. In the treatment of TB, with prolonged use of anti-TB drugs, the emergence and spread of MDR and extensive drug-resistant (XDR) M. tuberculosis strains present challenges in treating TB. In this review, it was aimed to mention the general properties of first and second-line anti-TB drugs used in the treatment of TB.

Kaynakça

  • Knechel NA. Tuberculosis: pathophysiology, clinical features, and diagnosis. Critical care nurse. 2009;29(2):34-43. https://doi.org/10.4037/ccn2009968
  • Sia JK, Rengarajan J. Immunology of Mycobacterium tuberculosis infections. Microbiology spectrum. 2019;7(4):7-4. https://doi.org/10.1128/microbiolspec.GPP3-0022-2018
  • Bañuls AL, Sanou A, Nguyen TVA, Godreul S. Mycobacterium tuberculosis: Ecology and Evolution of a Human Bacterium. Journal of Medical Microbiology. 2015;64(11):1261-1269. https://doi.org/10.1099/jmm.0.000171
  • World Health Organization (WHO). Global Tuberculosis Report 2021. Geneva: World Health Organization; 2021. https://www.who.int/publications/i/item/9789240037021. 10 Ekim 2022 de erişildi.
  • T.C. Sağlık Bakanlığı, Halk Sağlığı Genel Müdürlüğü, Türkiye’de Verem Savaşı 2020 Raporu Ankara. https://hsgm.saglik.gov.tr/depo/kurumsal/yayinlarimiz/Raporlar/Turkiyede_Verem_Savasi_2020_Raporu.pdf. 15 Kasım 2022’de erişildi.
  • Jhun BW, Koh WJ. Treatment of isoniazid-resistant pulmonary tuberculosis. Tuberculosis and Respiratory Diseases, 2020;83(1):20-30. https://doi.org/10.4046/trd.2019.0065
  • Prasad R, Gupta N, Banka A. Multidrug-resistant tuberculosis/rifampicin-resistant tuberculosis: Principles of management. Lung India: official organ of Indian chest society. 2018;35(1): 78-81. https://doi.org/10.4103/lungindia.lungindia_98_17
  • An Q, Li C, Chen Y, Deng Y, Yang T, Luo Y. Repurposed drug candidates for antituberculosis therapy. European journal of medicinal chemistry. 2020;192:112175. https://doi.org/10.1016/j.ejmech.2020.112175
  • Almedia da Silva P, Aínsa JA. Drug and drug interactions. İçinde: Palomino JC, Leão SC, Ritacco V, ed. Tuberculosis 2007 From basic science to patient care. 1st Ed. Bourcillier Kamps, 2007:593-611.
  • Hopewell PC. Treatment of Tuberculosis. İçinde: Raviglione MC, Ed. Tuberculosis: the Essentials (Vol. 237). 4.Baskı. Informa Healthcare USA, Inc;2016:113-122.
  • Mitchison DA. The action of antituberculosis drugs in shortcourse therapy. Tubercle 1985;66:219-25.
  • Otkun M. Tüberküloz tedavisinde Temel ilkeler ve direnç sorunu. Klimik dergisi. 2001;14(2):71-82.
  • Janin YL. Antituberculosis drugs: ten years of research. Bioorganic & medicinal chemistry. 2007;15(7):2479-2513.
  • Blumberg HM, Burman WJ, Chaisson RE, Daley CL. American thoracic society/centers for disease control and prevention/infectious diseases society of America: treatment of tuberculosis. American journal of respiratory and critical care medicine. 2003; 167(4):603.
  • Hoagland DT, Liu J, Lee RB, Lee RE. New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Advanced drug delivery reviews. 2016;102:55-72. https://doi.org/10.1016/j.addr.2016.04.026
  • T.C. Sağlık Bakanlığı, Halk Sağlığı Genel Müdürlüğü, Tüberküloz Tanı ve Tedavi Rehberi. 2 Baskı. 2019. https://hsgm.saglik.gov.tr/depo/birimler/tuberkuloz_db/haberler/Tuberkuloz_Tani_Ve_Tedavi_Rehberi_/Tuberkuloz_Tani_ve_Tedavi_Rehberi.pdf 1 Mart 2023’de erişildi.
  • Zhang Y, Amzel L. Tuberculosis drug targets. Curr Drug Targets. 2002;3(2):131-154.
  • Bansal R, Sharma D, Singh R. Tuberculosis and its treatment: an overview. Mini Reviews in Medicinal Chemistry. 2018;18(1):58-71. https://doi.org/10.2174/1389557516666160823160010
  • Cheng S, Hide M, Pheng SH, et al. Resistance to second-line anti-TB drugs in cambodia: a phenotypic and genetic study. Infection and Drug Resistance. 2021;1089-1104. doi: 10.2147/IDR.S289907
  • Brausch LM, Bass JB Jr. The treatment of tuberculosis. Medical Clinic of North America. 1993;77:1277-88.
  • Kocabaş A, Kuleci S. Antimikobakteriyel ajanlar. İçinde: Sarıca Y, İnal TC, Canataroğlu A, Güvenç B, Horoz M, Sağlıker Özkaynak P, ed. Harrison İç Hastalıklar Prensibleri. 1.Cilt. Nobel Tıp Kitabevleri, İstanbul; 2004: 1017-23.
  • Özkara Ş. Tüberküloz kliniği, tanı ve tedavisine genel bakış. İçinde: Şimşek H, Gülhan M, İlhan Tarhan A, ed. Her Yönüyle Tüberküloz. 1.Baskı. Hipokrat Kitabevi, Ankara; 2019: 93-105.
  • Vilchèze C, Jacobs Jr WR. The isoniazid paradigm of killing, resistance, and persistence in Mycobacterium tuberculosis. Journal of molecular biology. 2019;431(18):3450-61. https://doi.org/10.1016/j.jmb.2019.02.016
  • Unissa AN, Subbian S, Hanna LE, Selvakumar N. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infection, Genetics Evolution. 2016;45:474-492. doi: 10.1016/j.meegid.2016.09.004
  • Miotto P, Zhang Y, Cirillo DM, Yam WC. Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Respirology. 2018;23(12):1098-1113. https://doi.org/10.1111/resp.13393
  • Grobbelaar M, Louw GE, Sampson SL, van Helden PD, Donald PR, Warren RM. Evolution of rifampicin treatment for tuberculosis. Infection, Genetics and Evolution. 2019;74:103937. https://doi.org/10.1016/j.meegid.2019.103937
  • Zaw MT, Emran NA, Lin Z. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis. Journal of infection and public health. 2018;11(5):605-10. https://doi.org/10.1016/j.jiph.2018.04.005
  • Palomino JC, Martin A. Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics. 2014;3(3):317-40. https://doi.org/10.3390/antibiotics3030317
  • Goldstein BP. Resistance to rifampicin: a review. The Journal of antibiotics. 2014;67(9):625-30.
  • Waters M, Tadi P. Streptomycin. In:StatPearls. StatPearls Publishing, Treasure Island (FL). 2022. PMID: 32310346.
  • Sreevatsan S, Pan X, Stockbauer KE, Williams DL, Kreiswirth BN, Musser JM. Characterization of rpsL and rrs mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from diverse geographic localities. Antimicrobial agents and chemotherapy. 1996;40(4):1024-26.
  • Smittipat N, Juthayothin T, Billamas P, et al. Mutations in rrs, rpsL and gidB in streptomycin-resistant Mycobacterium tuberculosis isolates from Thailand. Journal of global antimicrobial resistance. 2016; 4:5-10. https://doi.org/10.1016/j.jgar.2015.11.009
  • Sharma D, Bisht D. Secretory proteome analysis of streptomycin-resistant Mycobacterium tuberculosis clinical isolates. SLAS DISCOVERY:Advancing Life Sciences R&D. 2017; 22(10):1229-38. https://doi.org/10.1177/2472555217698428
  • Lee N, Nguyen H. Ethambutol. In: StatPearls. StatPearls Publishing, Treasure Island (FL); 2022. PMID: 32644476.
  • Mohammadi B, Ramazanzadeh R, Nouri B, Rouhi S. Frequency of codon 306 mutations in embB gene of Mycobacterium tuberculosis resistant to ethambutol: a systematic review and meta-analysis. International Journal of Preventive Medicine. 2020;11:112. https://doi.org/10.4103/ijpvm.IJPVM_114_19
  • Zhang N, Savic RM, Boeree MJ. Optimising pyrazinamide for the treatment of tuberculosis. European Respiratory Journal. 2021;58(1):2002013. doi: 10.1183/13993003.02013-2020.
  • Zhang Y, Mitchison D. The curious characteristics of pyrazinamide: a review. The international journal of tuberculosis and lung disease. 2003;7(1):6-21.
  • De Jong BC, Onipede A, Pym AS, Gagneux S, Aga RS, DeRiemer K, Small PM. Does resistance to pyrazinamide accurately indicate the presence of Mycobacterium bovis?. Journal of clinical microbiology. 2005; 43(7):3530-32.
  • Njire M, Tan Y, Mugwer, J, et al. Pyrazinamide resistance in Mycobacterium tuberculosis: Review and update. Advances in Medical Sciences. 2016;61(1): 63-71. https://doi.org/10.1016/j.advms.2015.09.007
  • Chen J, Zhang S, Cui P, Shi W, Zhang W, Zhang Y. Identification of novel mutations associated with cycloserine resistance in Mycobacterium tuberculosis. J Antimicrob Chemother.2017;72(12):3272-76. doi: 10.1093/jac/dkx316.
  • Ushtanit A, Kulagina E, Mikhailova Y, Makarova M, Safonova S, Zimenkov D. Molecular determinants of Ethionamide resistance in clinical isolates of mycobacterium tuberculosis. Antibiotics. 2022;11(2):133. https://doi.org/10.3390/antibiotics11020133
  • Vilchèze C, Jacobs Jr WR. Resistance to isoniazid and ethionamide in Mycobacterium tuberculosis:genes, mutations, and causalities. Microbiology spectrum. 2014;2(4):2-4. https://doi.org/10.1128/microbiolspec.MGM2-0014-2013
  • Bashir KM, Cho MG. The Effect of Kanamycin and Tetracycline on Growth and Photosynthetic Activity of Two Chlorophyte Algae. Biomed Res Int. 2016;2016:5656304. doi: 10.1155/2016/5656304.
  • Hotta K, Kondo S. Kanamycin and its derivative, arbekacin: significance and impact. J Antibiot (Tokyo). 2018;71(4):417-24. doi: 10.1038/s41429-017-0017-8.
  • Ramirez MS, Tolmasky ME. Amikacin: Uses, Resistance, and Prospects for Inhibition. Molecules. 2017;22(12):2267. doi: 10.3390/molecules22122267.
  • Cheng AF, Yew WW, Chan EW, Chin ML, Hui MM, Chan RC. Multiplex PCR amplimer conformation analysis for rapid detection of gyrA mutations in fluoroquinolone-resistant Mycobacterium tuberculosis clinical isolates. Antimicrobial Agents and Chemotherapy. 2004; 48(2):596-601. https://doi.org/10.1128/AAC.48.2.596-601.2004
  • Chakraborty S, Gruber T, Barry CE 3rd, Boshoff HI, Rhee KY. Para-aminosalicylic acid acts as an alternative substrate of folate metabolism in Mycobacterium tuberculosis. Science. 2013;339(6115):88-91. doi: 10.1126/science.1228980.
  • Minato Y, Thiede JM, Kordus SL, McKlveen EJ, Turman BJ, Baughn AD. Mycobacterium tuberculosis folate metabolism and the mechanistic basis for para-aminosalicylic acid susceptibility and resistance. Antimicrob Agents Chemother. 2015;59(9):5097-106. doi: 10.1128/AAC.00647-15.
  • O'Brien RJ, Spigelman M. New drugs for tuberculosis: current status and future prospects. Clinics in chest medicine. 2005;26(2): 327-40. https://doi.org/10.1016/j.ccm.2005.02.013
  • Peng YUE, Wen-jing CAO, Xin XU, et al. Research progress on new anti-tuberculosis drug pretomanid. China Tropical Medicine. 2021; 21(4):370-6.
  • Torfs E, Piller T, Cos P, Cappoen D. Opportunities for Overcoming Mycobacterium tuberculosis Drug Resistance: Emerging Mycobacterial Targets and Host-Directed Therapy. İnternational Journal of Molecular Sciences.2019;20(12):2868. https://doi.org/10.3390/ijms20122868
  • Manjunatha U, Boshoff Im H, Barry CE. The mechanism of action of PA-824: Novel insights from transcriptional profiling. 2009;(3):215-8. https://doi.org/10.4161/cib.2.3.7926
  • Ginsberg AM, Laurenzi MW, Rouse DJ, Whitney KD, Spigelman MK. Safety, tolerability, and pharmacokinetics of PA-824 in healthy subjects. Antimicrob Agents Chemother. 2009;53(9):3720-5. doi: 10.1128/AAC.00106-09.
  • Dawson R, Diacon A. PA-824 , moxifloxacin and pyrazinamide combination therapy for tuberculosis. Expert Opin Investig Drugs. 2013;22(7):927-32. doi: 10.1517/13543784.2013.801958.
  • Bahuguna A, Rawat DS. An overview of new antitubercular drugs, drug candidates, and their targets. Med Res Rev. 2020;40(1):263-292. doi: 10.1002/med.21602.
  • Matsumoto M, Hashizume H, Tomishige T, et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS medicine. 2006;3(11):e466. https://doi.org/10.1371/journal.pmed.0030466
  • Peloquin CA, Davies GR. The Treatment of Tuberculosis. Clin Pharmacol Ther. 2021;110(6):1455-1466. doi: 10.1002/cpt.2261.
  • Mirsaeidi M. After 40 years, new medicine for combating TB. International journal of mycobacteriology. 2013;2(1):1-2. https://doi.org/10.1016/j.ijmyco.2013.01.004
  • D'Ambrosio L, Centis R, Sotgiu G, Pontali E, Spanevello A. Migliori GB. New anti-tuberculosis drugs and regimens: 2015 update. ERJ Open Research. 2015;1(1):00010. doi: 10.1183/23120541.00010-2015.
  • Hashemian SMR, Farhadi T, Ganjparvar M. Linezolid: a review of its properties, function, and use in critical care. Drug design, development and therapy. 2018;12, 1759–1767.
  • Cholo MC, Steel HC, Fourie PB, Germishuizen WA, Anderson R. Clofazimine: current status and future prospects. Journal of antimicrobial chemotherapy. 2012;67(2): 290-298. https://doi.org/10.1093/jac/dkr444 https://doi.org/10.2147/DDDT.S164515
  • Lessem E. The tuberculosis treatment pipeline. HIV Treatment Bulletin. Related: Special reports http://i-base.info/htb/17111. 21 Kasım 2022’de erişildi.
  • Scarim CB, Pavan FR. Thiazole, triazole, thio-and semicarbazone derivatives-Promising moieties for drug development for the treatment of tuberculosis. European Journal of Medicinal Chemistry Reports. 2021;1:100002. https://doi.org/10.1016/j.ejmcr.2021.100002
  • Padmapriyadarsini C, Vohra V, Bhatnagar A, et al. Bedaquiline, Delamanid, Linezolid, and Clofazimine for Treatment of Pre-extensively Drug-Resistant Tuberculosis. Clinical Infectious Diseases. 2022;ciac528. https://doi.org/10.1093/cid/ciac528

Tüberküloz tedavisinde kullanılan antitüberküloz ilaçlar

Yıl 2023, Cilt: 16 Sayı: 3, 525 - 542, 18.12.2023

Öz

Tüberküloz (TB), Mycobacterium tuberculosis (M. tuberculosis)’in sebep olduğu değişik klinik görünümlere sahip kronik, granülomatöz karakterde bakteriyel bir hastalıktır. TB günümüzde halen önemini koruyan bir halk sağlığı sorunu olmaya devam etmektedir. Son yıllarda HIV/AIDS ile ko-enfeksiyon olması ve çok ilaca dirençli (ÇİD) vakalar göz önüne alındığında TB hastalığında tedavi en az altı ay süre ile çoklu anti-TB ilaçlarla birlikte mevcut tedaviyi oluşturmaktadır. TB için mevcut birinci kuşak (primer) tedaviler, ilk iki ay boyunca izoniazid (INH), rifampisin (RIF), pirazinamid (PZA) ve etambutol (EMB) kombinasyonunun uygulanmasına ve ardından dört ila yedi aydan daha uzun süreli INH ve RIF tedavisine dayanmaktadır. TB tedavisinde, anti-TB ilaçların uzun süre kullanılması ile M. tuberculosis’in ÇİD ve yaygın ilaca dirençli (YİD) suşlarının ortaya çıkması ve yayılması TB’nin tedavisinde zorlukları beraberinde getirmektedir. Bu derlemede TB tedavisinde kullanılan birinci ve ikinci kuşak anti-TB ilaçların genel özelliklerinden bahsedilmesi amaçlanmıştır.

Kaynakça

  • Knechel NA. Tuberculosis: pathophysiology, clinical features, and diagnosis. Critical care nurse. 2009;29(2):34-43. https://doi.org/10.4037/ccn2009968
  • Sia JK, Rengarajan J. Immunology of Mycobacterium tuberculosis infections. Microbiology spectrum. 2019;7(4):7-4. https://doi.org/10.1128/microbiolspec.GPP3-0022-2018
  • Bañuls AL, Sanou A, Nguyen TVA, Godreul S. Mycobacterium tuberculosis: Ecology and Evolution of a Human Bacterium. Journal of Medical Microbiology. 2015;64(11):1261-1269. https://doi.org/10.1099/jmm.0.000171
  • World Health Organization (WHO). Global Tuberculosis Report 2021. Geneva: World Health Organization; 2021. https://www.who.int/publications/i/item/9789240037021. 10 Ekim 2022 de erişildi.
  • T.C. Sağlık Bakanlığı, Halk Sağlığı Genel Müdürlüğü, Türkiye’de Verem Savaşı 2020 Raporu Ankara. https://hsgm.saglik.gov.tr/depo/kurumsal/yayinlarimiz/Raporlar/Turkiyede_Verem_Savasi_2020_Raporu.pdf. 15 Kasım 2022’de erişildi.
  • Jhun BW, Koh WJ. Treatment of isoniazid-resistant pulmonary tuberculosis. Tuberculosis and Respiratory Diseases, 2020;83(1):20-30. https://doi.org/10.4046/trd.2019.0065
  • Prasad R, Gupta N, Banka A. Multidrug-resistant tuberculosis/rifampicin-resistant tuberculosis: Principles of management. Lung India: official organ of Indian chest society. 2018;35(1): 78-81. https://doi.org/10.4103/lungindia.lungindia_98_17
  • An Q, Li C, Chen Y, Deng Y, Yang T, Luo Y. Repurposed drug candidates for antituberculosis therapy. European journal of medicinal chemistry. 2020;192:112175. https://doi.org/10.1016/j.ejmech.2020.112175
  • Almedia da Silva P, Aínsa JA. Drug and drug interactions. İçinde: Palomino JC, Leão SC, Ritacco V, ed. Tuberculosis 2007 From basic science to patient care. 1st Ed. Bourcillier Kamps, 2007:593-611.
  • Hopewell PC. Treatment of Tuberculosis. İçinde: Raviglione MC, Ed. Tuberculosis: the Essentials (Vol. 237). 4.Baskı. Informa Healthcare USA, Inc;2016:113-122.
  • Mitchison DA. The action of antituberculosis drugs in shortcourse therapy. Tubercle 1985;66:219-25.
  • Otkun M. Tüberküloz tedavisinde Temel ilkeler ve direnç sorunu. Klimik dergisi. 2001;14(2):71-82.
  • Janin YL. Antituberculosis drugs: ten years of research. Bioorganic & medicinal chemistry. 2007;15(7):2479-2513.
  • Blumberg HM, Burman WJ, Chaisson RE, Daley CL. American thoracic society/centers for disease control and prevention/infectious diseases society of America: treatment of tuberculosis. American journal of respiratory and critical care medicine. 2003; 167(4):603.
  • Hoagland DT, Liu J, Lee RB, Lee RE. New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Advanced drug delivery reviews. 2016;102:55-72. https://doi.org/10.1016/j.addr.2016.04.026
  • T.C. Sağlık Bakanlığı, Halk Sağlığı Genel Müdürlüğü, Tüberküloz Tanı ve Tedavi Rehberi. 2 Baskı. 2019. https://hsgm.saglik.gov.tr/depo/birimler/tuberkuloz_db/haberler/Tuberkuloz_Tani_Ve_Tedavi_Rehberi_/Tuberkuloz_Tani_ve_Tedavi_Rehberi.pdf 1 Mart 2023’de erişildi.
  • Zhang Y, Amzel L. Tuberculosis drug targets. Curr Drug Targets. 2002;3(2):131-154.
  • Bansal R, Sharma D, Singh R. Tuberculosis and its treatment: an overview. Mini Reviews in Medicinal Chemistry. 2018;18(1):58-71. https://doi.org/10.2174/1389557516666160823160010
  • Cheng S, Hide M, Pheng SH, et al. Resistance to second-line anti-TB drugs in cambodia: a phenotypic and genetic study. Infection and Drug Resistance. 2021;1089-1104. doi: 10.2147/IDR.S289907
  • Brausch LM, Bass JB Jr. The treatment of tuberculosis. Medical Clinic of North America. 1993;77:1277-88.
  • Kocabaş A, Kuleci S. Antimikobakteriyel ajanlar. İçinde: Sarıca Y, İnal TC, Canataroğlu A, Güvenç B, Horoz M, Sağlıker Özkaynak P, ed. Harrison İç Hastalıklar Prensibleri. 1.Cilt. Nobel Tıp Kitabevleri, İstanbul; 2004: 1017-23.
  • Özkara Ş. Tüberküloz kliniği, tanı ve tedavisine genel bakış. İçinde: Şimşek H, Gülhan M, İlhan Tarhan A, ed. Her Yönüyle Tüberküloz. 1.Baskı. Hipokrat Kitabevi, Ankara; 2019: 93-105.
  • Vilchèze C, Jacobs Jr WR. The isoniazid paradigm of killing, resistance, and persistence in Mycobacterium tuberculosis. Journal of molecular biology. 2019;431(18):3450-61. https://doi.org/10.1016/j.jmb.2019.02.016
  • Unissa AN, Subbian S, Hanna LE, Selvakumar N. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infection, Genetics Evolution. 2016;45:474-492. doi: 10.1016/j.meegid.2016.09.004
  • Miotto P, Zhang Y, Cirillo DM, Yam WC. Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Respirology. 2018;23(12):1098-1113. https://doi.org/10.1111/resp.13393
  • Grobbelaar M, Louw GE, Sampson SL, van Helden PD, Donald PR, Warren RM. Evolution of rifampicin treatment for tuberculosis. Infection, Genetics and Evolution. 2019;74:103937. https://doi.org/10.1016/j.meegid.2019.103937
  • Zaw MT, Emran NA, Lin Z. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis. Journal of infection and public health. 2018;11(5):605-10. https://doi.org/10.1016/j.jiph.2018.04.005
  • Palomino JC, Martin A. Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics. 2014;3(3):317-40. https://doi.org/10.3390/antibiotics3030317
  • Goldstein BP. Resistance to rifampicin: a review. The Journal of antibiotics. 2014;67(9):625-30.
  • Waters M, Tadi P. Streptomycin. In:StatPearls. StatPearls Publishing, Treasure Island (FL). 2022. PMID: 32310346.
  • Sreevatsan S, Pan X, Stockbauer KE, Williams DL, Kreiswirth BN, Musser JM. Characterization of rpsL and rrs mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from diverse geographic localities. Antimicrobial agents and chemotherapy. 1996;40(4):1024-26.
  • Smittipat N, Juthayothin T, Billamas P, et al. Mutations in rrs, rpsL and gidB in streptomycin-resistant Mycobacterium tuberculosis isolates from Thailand. Journal of global antimicrobial resistance. 2016; 4:5-10. https://doi.org/10.1016/j.jgar.2015.11.009
  • Sharma D, Bisht D. Secretory proteome analysis of streptomycin-resistant Mycobacterium tuberculosis clinical isolates. SLAS DISCOVERY:Advancing Life Sciences R&D. 2017; 22(10):1229-38. https://doi.org/10.1177/2472555217698428
  • Lee N, Nguyen H. Ethambutol. In: StatPearls. StatPearls Publishing, Treasure Island (FL); 2022. PMID: 32644476.
  • Mohammadi B, Ramazanzadeh R, Nouri B, Rouhi S. Frequency of codon 306 mutations in embB gene of Mycobacterium tuberculosis resistant to ethambutol: a systematic review and meta-analysis. International Journal of Preventive Medicine. 2020;11:112. https://doi.org/10.4103/ijpvm.IJPVM_114_19
  • Zhang N, Savic RM, Boeree MJ. Optimising pyrazinamide for the treatment of tuberculosis. European Respiratory Journal. 2021;58(1):2002013. doi: 10.1183/13993003.02013-2020.
  • Zhang Y, Mitchison D. The curious characteristics of pyrazinamide: a review. The international journal of tuberculosis and lung disease. 2003;7(1):6-21.
  • De Jong BC, Onipede A, Pym AS, Gagneux S, Aga RS, DeRiemer K, Small PM. Does resistance to pyrazinamide accurately indicate the presence of Mycobacterium bovis?. Journal of clinical microbiology. 2005; 43(7):3530-32.
  • Njire M, Tan Y, Mugwer, J, et al. Pyrazinamide resistance in Mycobacterium tuberculosis: Review and update. Advances in Medical Sciences. 2016;61(1): 63-71. https://doi.org/10.1016/j.advms.2015.09.007
  • Chen J, Zhang S, Cui P, Shi W, Zhang W, Zhang Y. Identification of novel mutations associated with cycloserine resistance in Mycobacterium tuberculosis. J Antimicrob Chemother.2017;72(12):3272-76. doi: 10.1093/jac/dkx316.
  • Ushtanit A, Kulagina E, Mikhailova Y, Makarova M, Safonova S, Zimenkov D. Molecular determinants of Ethionamide resistance in clinical isolates of mycobacterium tuberculosis. Antibiotics. 2022;11(2):133. https://doi.org/10.3390/antibiotics11020133
  • Vilchèze C, Jacobs Jr WR. Resistance to isoniazid and ethionamide in Mycobacterium tuberculosis:genes, mutations, and causalities. Microbiology spectrum. 2014;2(4):2-4. https://doi.org/10.1128/microbiolspec.MGM2-0014-2013
  • Bashir KM, Cho MG. The Effect of Kanamycin and Tetracycline on Growth and Photosynthetic Activity of Two Chlorophyte Algae. Biomed Res Int. 2016;2016:5656304. doi: 10.1155/2016/5656304.
  • Hotta K, Kondo S. Kanamycin and its derivative, arbekacin: significance and impact. J Antibiot (Tokyo). 2018;71(4):417-24. doi: 10.1038/s41429-017-0017-8.
  • Ramirez MS, Tolmasky ME. Amikacin: Uses, Resistance, and Prospects for Inhibition. Molecules. 2017;22(12):2267. doi: 10.3390/molecules22122267.
  • Cheng AF, Yew WW, Chan EW, Chin ML, Hui MM, Chan RC. Multiplex PCR amplimer conformation analysis for rapid detection of gyrA mutations in fluoroquinolone-resistant Mycobacterium tuberculosis clinical isolates. Antimicrobial Agents and Chemotherapy. 2004; 48(2):596-601. https://doi.org/10.1128/AAC.48.2.596-601.2004
  • Chakraborty S, Gruber T, Barry CE 3rd, Boshoff HI, Rhee KY. Para-aminosalicylic acid acts as an alternative substrate of folate metabolism in Mycobacterium tuberculosis. Science. 2013;339(6115):88-91. doi: 10.1126/science.1228980.
  • Minato Y, Thiede JM, Kordus SL, McKlveen EJ, Turman BJ, Baughn AD. Mycobacterium tuberculosis folate metabolism and the mechanistic basis for para-aminosalicylic acid susceptibility and resistance. Antimicrob Agents Chemother. 2015;59(9):5097-106. doi: 10.1128/AAC.00647-15.
  • O'Brien RJ, Spigelman M. New drugs for tuberculosis: current status and future prospects. Clinics in chest medicine. 2005;26(2): 327-40. https://doi.org/10.1016/j.ccm.2005.02.013
  • Peng YUE, Wen-jing CAO, Xin XU, et al. Research progress on new anti-tuberculosis drug pretomanid. China Tropical Medicine. 2021; 21(4):370-6.
  • Torfs E, Piller T, Cos P, Cappoen D. Opportunities for Overcoming Mycobacterium tuberculosis Drug Resistance: Emerging Mycobacterial Targets and Host-Directed Therapy. İnternational Journal of Molecular Sciences.2019;20(12):2868. https://doi.org/10.3390/ijms20122868
  • Manjunatha U, Boshoff Im H, Barry CE. The mechanism of action of PA-824: Novel insights from transcriptional profiling. 2009;(3):215-8. https://doi.org/10.4161/cib.2.3.7926
  • Ginsberg AM, Laurenzi MW, Rouse DJ, Whitney KD, Spigelman MK. Safety, tolerability, and pharmacokinetics of PA-824 in healthy subjects. Antimicrob Agents Chemother. 2009;53(9):3720-5. doi: 10.1128/AAC.00106-09.
  • Dawson R, Diacon A. PA-824 , moxifloxacin and pyrazinamide combination therapy for tuberculosis. Expert Opin Investig Drugs. 2013;22(7):927-32. doi: 10.1517/13543784.2013.801958.
  • Bahuguna A, Rawat DS. An overview of new antitubercular drugs, drug candidates, and their targets. Med Res Rev. 2020;40(1):263-292. doi: 10.1002/med.21602.
  • Matsumoto M, Hashizume H, Tomishige T, et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS medicine. 2006;3(11):e466. https://doi.org/10.1371/journal.pmed.0030466
  • Peloquin CA, Davies GR. The Treatment of Tuberculosis. Clin Pharmacol Ther. 2021;110(6):1455-1466. doi: 10.1002/cpt.2261.
  • Mirsaeidi M. After 40 years, new medicine for combating TB. International journal of mycobacteriology. 2013;2(1):1-2. https://doi.org/10.1016/j.ijmyco.2013.01.004
  • D'Ambrosio L, Centis R, Sotgiu G, Pontali E, Spanevello A. Migliori GB. New anti-tuberculosis drugs and regimens: 2015 update. ERJ Open Research. 2015;1(1):00010. doi: 10.1183/23120541.00010-2015.
  • Hashemian SMR, Farhadi T, Ganjparvar M. Linezolid: a review of its properties, function, and use in critical care. Drug design, development and therapy. 2018;12, 1759–1767.
  • Cholo MC, Steel HC, Fourie PB, Germishuizen WA, Anderson R. Clofazimine: current status and future prospects. Journal of antimicrobial chemotherapy. 2012;67(2): 290-298. https://doi.org/10.1093/jac/dkr444 https://doi.org/10.2147/DDDT.S164515
  • Lessem E. The tuberculosis treatment pipeline. HIV Treatment Bulletin. Related: Special reports http://i-base.info/htb/17111. 21 Kasım 2022’de erişildi.
  • Scarim CB, Pavan FR. Thiazole, triazole, thio-and semicarbazone derivatives-Promising moieties for drug development for the treatment of tuberculosis. European Journal of Medicinal Chemistry Reports. 2021;1:100002. https://doi.org/10.1016/j.ejmcr.2021.100002
  • Padmapriyadarsini C, Vohra V, Bhatnagar A, et al. Bedaquiline, Delamanid, Linezolid, and Clofazimine for Treatment of Pre-extensively Drug-Resistant Tuberculosis. Clinical Infectious Diseases. 2022;ciac528. https://doi.org/10.1093/cid/ciac528
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derleme
Yazarlar

Nurcihan Biltekin 0000-0002-7165-9385

Mahmut Ülger 0000-0001-6649-4195

Erken Görünüm Tarihi 5 Aralık 2023
Yayımlanma Tarihi 18 Aralık 2023
Gönderilme Tarihi 2 Aralık 2022
Kabul Tarihi 31 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 16 Sayı: 3

Kaynak Göster

APA Biltekin, N., & Ülger, M. (2023). Tüberküloz tedavisinde kullanılan antitüberküloz ilaçlar. Mersin Üniversitesi Sağlık Bilimleri Dergisi, 16(3), 525-542.
AMA Biltekin N, Ülger M. Tüberküloz tedavisinde kullanılan antitüberküloz ilaçlar. Mersin Univ Saglık Bilim Derg. Aralık 2023;16(3):525-542.
Chicago Biltekin, Nurcihan, ve Mahmut Ülger. “Tüberküloz Tedavisinde kullanılan antitüberküloz ilaçlar”. Mersin Üniversitesi Sağlık Bilimleri Dergisi 16, sy. 3 (Aralık 2023): 525-42.
EndNote Biltekin N, Ülger M (01 Aralık 2023) Tüberküloz tedavisinde kullanılan antitüberküloz ilaçlar. Mersin Üniversitesi Sağlık Bilimleri Dergisi 16 3 525–542.
IEEE N. Biltekin ve M. Ülger, “Tüberküloz tedavisinde kullanılan antitüberküloz ilaçlar”, Mersin Univ Saglık Bilim Derg, c. 16, sy. 3, ss. 525–542, 2023.
ISNAD Biltekin, Nurcihan - Ülger, Mahmut. “Tüberküloz Tedavisinde kullanılan antitüberküloz ilaçlar”. Mersin Üniversitesi Sağlık Bilimleri Dergisi 16/3 (Aralık 2023), 525-542.
JAMA Biltekin N, Ülger M. Tüberküloz tedavisinde kullanılan antitüberküloz ilaçlar. Mersin Univ Saglık Bilim Derg. 2023;16:525–542.
MLA Biltekin, Nurcihan ve Mahmut Ülger. “Tüberküloz Tedavisinde kullanılan antitüberküloz ilaçlar”. Mersin Üniversitesi Sağlık Bilimleri Dergisi, c. 16, sy. 3, 2023, ss. 525-42.
Vancouver Biltekin N, Ülger M. Tüberküloz tedavisinde kullanılan antitüberküloz ilaçlar. Mersin Univ Saglık Bilim Derg. 2023;16(3):525-42.

MEÜ Sağlık Bilimleri Dergisi Doç.Dr. Gönül Aslan'ın Editörlüğünde Mersin Üniversitesi Sağlık Bilimleri Enstitüsüne bağlı olarak 2008 yılında yayımlanmaya başlanmıştır. Prof.Dr. Gönül Aslan Mart 2015 tarihinde Başeditörlük görevine Prof.Dr. Caferi Tayyar Şaşmaz'a devretmiştir. 01 Ocak 2023 tarihinde Prof.Dr. C. Tayyar Şaşmaz Başeditörlük görevini Prof.Dr. Özlem İzci Ay'a devretmiştir. 

Yılda üç sayı olarak (Nisan - Ağustos - Aralık) yayımlanan dergi multisektöryal hakemli bir bilimsel dergidir. Dergide araştırma makaleleri yanında derleme, olgu sunumu ve editöre mektup tipinde bilimsel yazılar yayımlanmaktadır. Yayın hayatına başladığı günden beri eposta yoluyla yayın alan ve hem online hem de basılı olarak yayımlanan dergimiz, Mayıs 2014 sayısından itibaren sadece online olarak yayımlanmaya başlamıştır. TÜBİTAK-ULAKBİM Dergi Park ile Nisan 2015 tarihinde yapılan Katılım Sözleşmesi sonrasında online yayın kabul ve değerlendirme sürecine geçmiştir.

Mersin Üniversitesi Sağlık Bilimleri Dergisi 16 Kasım 2011'dan beri Türkiye Atıf Dizini tarafından indekslenmektedir.

Mersin Üniversitesi Sağlık Bilimleri Dergisi 2016 birinci sayıdan itibaren ULAKBİM Tıp Veri Tabanı tarafından indekslenmektedir.

Mersin Üniversitesi Sağlık Bilimleri Dergisi 02 Ekim 2019'dan beri DOAJ tarafından indekslenmektedir.

Mersin Üniversitesi Sağlık Bilimleri Dergisi 23 Mart 2021'den beri EBSCO tarafından indekslenmektedir.


Dergimiz açık erişim politikasını benimsemiş olup, dergimizde makale başvuru, değerlendirme ve yayınlanma aşamasında ücret talep edilmemektedir. Dergimizde yayımlanan makalelerin tamamına ücretsiz olarak Arşivden erişilebilmektedir.

154561545815459   

Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı  ile lisanslanmıştır.