Research Article
BibTex RIS Cite

Tuz stresi altındaki biber bitkilerinin fizyolojik ve histolojik yanıtlarına triptofan’ın etkisi

Year 2024, Volume: 29 Issue: 3, 885 - 895, 18.12.2024
https://doi.org/10.37908/mkutbd.1472590

Abstract

Tuz stresi bitki fonksiyonlarını olumsuz yönde etkileyen önemli bir abiyotik stres faktörüdür. İndol-3-asetik asit (IAA) öncüsü olan triptofan, tuz stresi altında bitki büyümesinde önemli bir rol oynamaktadır. Bu çalışma, tuz stresine maruz kalan genç biber bitkilerinde farklı triptofan dozlarının (L-tr) etkilerini ortaya koymayı amaçlamıştır. Tuzluluk stresi öncesinde bitki köklerine kontrol ve tuz uygulamaları hariç olmak üzere 3 triptofan dozu uygulanmıştır. Daha sonra kontrol dışındaki tüm bitkilere sulama sırasında 150 mM tuz stresi (NaCl) uygulanmıştır. Çalışma, tuz stresi uygulaması başladıktan 35 gün sonra sona erdirilmiştir. Yapılan ölçümler arasında histolojik (korteks ve hücre çapları, ksilem ve orta damar çapları, epidermis kalınlığı) ve fizyolojik (yaprak su içeriği, membran geçirgenliği, klorofil ve karotenoid konsantrasyonları, toplam fenolik içerik) parametrelerde önemli farklılıklar kaydedilmiştir. Bu parametrelerin değerlendirilmesi triptofanın (L-tr) ozmotik düzenleme üzerindeki olumlu etkisini ortaya çıkarmıştır. L-tr uygulamaları tuz stresine göre ksilem, midrip, korteks hücre çapları ile epidermis ve korteks kalınlığını artırırken, korteks hücre sayısını azaltmıştır. Özellikle, NaCl + L-tr 100 µM uygulaması, kontrole kıyasla ksilem kanal çapında %25'lik bir artış, midrip çapında %30’luk bir artış ve epidermis kalınlığında %15'lik önemli bir artış göstermiştir. Genel olarak, NaCl + L-tr 100 µM uygulaması, çeşitli parametrelerde kontrollere en yakın değerleri sergilemiştir. Bu çalışma, biber bitkilerinde tuzluluk stresinin azaltılmasında L-tr'nin potansiyel faydasını ortaya koymaktadır.

References

  • Amuthavalli, P., & Sivasankaramoorthy S. (2012). Effect of salt stress on the growth and photosynthetic pigments of pigeon pea (Cajanus cajan). Journal of Applied Pharmaceutical Science, 2, 131-133.
  • Antony, E., Sridhar, K., & Kumar, V. (2017). Effect of chemical sprays and management practices on Brachiaria ruziziensis seed, production. Field Crops Research, 211, 19-26. https://doi.org/10.1016/j.fcr.2017.06.009
  • Altunlu, H. (2020). The effects of mycorrhiza and rhizobacteria application on growth and some physiological parameters of pepper (Capsicum annuum L.) under salt stres. Ege Üniversitesi Ziraat Fakültesi Dergisi, 57 (4), 501-510. https://doi.org/10.20289/zfdergi.655491
  • Aras, S., Keles, H., & Eşitken, A. (2020). Silicon nutrition counteracts salt-induced damage associated with changes in biochemical responses in apple. Bragantia, 79, 1-7. https://doi.org/10.1590/1678-4499.20190153
  • Aras, S., Keles, H., & Bozkurt, E. (2021). Physiological and histological responses of peach plants grafted onto different rootstocks under calcium deficiency conditions. Scientia Horticulturae, 281, 109967. https://doi.org/10.1016/j.scienta.2021.109967
  • Ayers, R.S., & Westcot, D.W. (1985). Water quality for agriculture (Vol. 29, p. 174). Rome: Food and Agriculture Organization of the United Nations.
  • Cantrell, I.C., & Linderman. R.G. (2001). Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant and Soil, 233, 269-281. https://doi.org/10.1023/A:1010564013601
  • Chartzoulakis, K.S., & Klapaki, G. (2000). Effects of nacl salinity on growth and yield of two pepper cultivars. Acta Horticulturae, 511, 143-150. https://doi.org/10.17660/ActaHortic.2000.511.16
  • Coban, G.A. (2023). Effects of sodium nitroprusside on some physiological and histological responses of pepper plants exposed to salt stress. Chilean Journal of Agricultural Research, 83 (6), 682-691. https://doi.org/10.4067/S0718-58392023000600682
  • De Pascale, S., Ruggiero, C., Barbieri, G., & Maggio, A. (2003). Physiological responses of pepper to salinity and drought. Journal of the American Society for Horticultural Science, 128 (1), 48-54. https://doi.org/10.21273/JASHS.128.1.0048
  • Doğru, A., & Canavar, S. (2020). Physiological and biochemical components of salt tolerance in plants. Academic Platform Journal of Engineering and Science, 8 (1), 155-174. https://doi.org/10.21541/apjes.541620
  • Dolatabadian, A., Modarres Sanavy, S.A.M., & Ghanati, F. (2011). Effect of salinity on growth, xylem structure and anatomical characteristics of soybean. Notulae Scientia Biologicae, 3 (1), 41-45. https://doi.org/10.15835/nsb315627
  • Emirzeoğlu, C., & Basak, H. (2020). Determination of tolerance levels of central anatolian pepper genotypes to different salt concentrations. Uluslararasi Tarim ve Yaban Hayati Bilimleri Dergisi, 6 (2), 129-140. https://doi.org/10.24180/ijaws.689347
  • Frankenberger, W., & Arshad, M. (1991). Yield response of watermelon and muskmelon to L-tryptophan applied to the soil. Horticultural Science, 26, 35-37. https://doi.org/10.21273/HORTSCI.26.1.35
  • Ghoulam, C., Foursy, A., & Fares, K. (2002). Effects of salt stres on growth inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 47, 39-50. https://doi.org/10.1016/S0098-8472(01)00109-5
  • Gisbert-Mullor, R., Padilla, Y.G., Martínez-Cuenca, M.R., López-Galarza, S., & Calatayud, Á. (2021). Suitable rootstocks can alleviate the effects of heat stress on pepper plants. Scientia Horticulturae, 290, 110529. https://doi.org/10.1016/j.scienta.2021.110529
  • Güneş, A., İnal, A., Bagci, E.G., & Pilbeam, D.J. (2007). Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant Soil, 290, 103-114. https://doi.org/10.1007/s11104-006-9137-9
  • Hancı, F., & Tuncer, G. (2020). How do foliar application of melatonin and L-tryptophan affect lettuce growth parameters under salt stress? Turkish Journal of Agriculture-Food Science and Technology, 8 (4), 960-964. https://doi.org/10.24925/turjaf.v8i4.960-964.3224
  • Hoagland, D.R., & Arnon, D.I. (1950). The water-culture method for growing plants without soil. CAES. California, 1950.
  • Islam, F., Wang, J., Farooq, M.A., Yang, C., Jan, M., Mwamba, T.M., Hannan, F., Xu, L., & Zhou, W. (2019). Rice responses and tolerance to salt stress. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas J (eds) Advances in rice research for abiotic stress tolerance, pp.791-819. Woodhead Publishing, Cambridge.
  • Jamil, M., Kharal, M.A., Ahmad, M., Abbasi, G.H., Nazli, F., Hussain, A., & Akhtar, M.F.U.Z. (2018). Inducing salinity tolerance in red pepper (Capsicum annuum L.) through exogenous application of proline and L-tryptophan. Soil & Environment, 37 (2), 160-168. https://doi.org/10.25252/SE/18/31052
  • Kahveci, H., Bilginer, N., Diraz-Yildirim, E., Kulak, M., Yazar, E., Kocacinar, F., & Karaman, S. (2021). Priming with salicylic acid, β-carotene and tryptophan modulates growth, phenolics and essential oil components of Ocimum basilicum L. grown under salinity. Scientia Horticulturae, 281, 109964. https://doi.org/10.1016/j.scienta.2021.109964
  • Khazaei, Z., & Estaji, A. (2020). Effect of foliar application of ascorbic acid on sweet pepper (Capsicum annuum) plants under drought stress. Acta Physiologiae Plantarum, 42 (7), 1-12. https://doi.org/10.1007/s11738-020-03106-z
  • Kusvuran, S., & Dasgan, H.Y. (2017). Effects of drought stress on physiological and biochemical changes in Phaseolus vulgaris L. Legume Research-An International Journal, 40 (1), 55-62. https://doi.org/10.18805/lr.v0i0.7025
  • Lechthaler, S., Colangeli, P., Gazzabin, M., & Anfodillo, T. (2019). Axial anatomy of the leaf midrib provides new insights into the hydraulic architecture and cavitation patterns of Acer pseudoplatanus leaves. Journal of Experimental Botany, 70 (21), 6195-6201. https://doi.org/10.1093/jxb/erz347
  • Li, C., Tan, D.X., Liang, D., Chang, C., Jia, D.F., & Ma, F.W. (2015). Melatonin mediates the regulation of ABA metabolism, free-radical scavenging and stomatal behaviour in two Malus species under drought stress. Journal of Experimental Botany, 66, 669-680. https://doi.org/10.1093/jxb/eru476
  • Lutts, S., Kinet, J.M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78, 389-398. https://doi.org/10.1006/anbo.1996.0134
  • Mokarram, M., Pourghasemi, H.R., & Zhang, H. (2020). Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves. Frontiers of Environmental Science & Engineering, 14 (6), 1-13. https://doi.org/10.1007/s11783-020-1331-0
  • Mustafa, A., Imran, M., Ashraf, M., & Mahmood, K. (2018). Perspectives of using L-tryptophan for improving productivity of agricultural crops: A review. Pedosphere, 28 (1), 16-34.https://doi.org/10.1016/S1002-0160(18)60002-5
  • Rezazadeh, A., Ghasemnezhad, A., Barani, M., & Telmadarrehei, T. (2012). Effect of salinity on phenolic composition and antioxidant activity of artichoke (Cynara scolymus L.) leaves. Research Journal of Medicinal Plant, 6 (3), 245-252. https://scialert.net/abstract/?doi=rjmp.2012.245.252
  • Rice-Evans, C.A., Miller, N.J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20 (7), 933-956. https://doi.org/10.1016/0891-5849(95)02227-9
  • Siddikee, M.A., Glick, B.R., Chauhan, P.S., jong Yim, W., & Sa, T. (2011). Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiology and Biochemistry, 49 (4), 427-434. https://doi.org/10.1016/j.plaphy.2011.01.015
  • Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16 (3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
  • Sivakumar, J., Prashanth, J.E.P., Rajesh, N., Reddy, S.M., & Pinjari, O.B. (2020). Principal component analysis approach for comprehensive screening of salt stress-tolerant tomato germplasm at the seedling stage. Journal of Biosciences, 45, 141.
  • Smart, R.E., & Bingham, G.E. (1974). Rapid estimates of relative water content. Plant Physiology, 53, 258-260. https://doi.org/10.1104/pp.53.2.258
  • Sönmez, İ., & Kaplan, M. (2004). Demre yöresi seralarında toprak ve sulama sularının tuz içeriğinin belirlenmesi. Akdeniz University Journal of the Faculty of Agriculture, 17 (2), 155-160.
  • Taleisnik, E., Rodríguez, A.A., Bustos, D., Erdei, L., Ortega, L., & Senn, M.E. (2009). Leaf expansion in grasses under salt stress. Journal of Plant Physiology, 166 (11), 1123-1140. https://doi.org/10.1016/j.jplph.2009.03.015
  • Yilmaz, K., Akinci, I.E., & Akinci, S. (2004). Effect of salt stress on growth and Na, K contents of pepper (Capsicum annuum L.) in germination and seedling stages. Pakistan Journal of Biological Sciences, 7 (4), 606-610.

Impact of tryptophan on physiological and histological responses of pepper plants under salt stress

Year 2024, Volume: 29 Issue: 3, 885 - 895, 18.12.2024
https://doi.org/10.37908/mkutbd.1472590

Abstract

Salt stress is a significant abiotic stressor adversely affecting plant functions. Tryptophan, a precursor to IAA, plays a crucial role in plant growth under such stress. This study investigated the effects of different tryptophan doses (L-tr) on young pepper plants subjected to salt stress. Preceding salinity stress, three L-tr doses were administered to plant roots, excluding control and salt applications. Subsequently, all plants except controls received 150 mM salinity (NaCl) during irrigation. The experiment concluded after 35 days post-salinity treatment. Significant variations were noted in histological (cortex and cell diameters, xylem and midrib diameters, epidermis thickness) and physiological (leaf water content, membrane permeability, chlorophyll and carotenoid concentrations, total phenolic content) parameters among treatments. Evaluation of these parameters revealed L-tr’s positive impact on osmotic regulation. L-tr applications increased xylem, midrib, and cortical cell diameter, cortex, and epidermis thickness compared to salt stress, while cortical cell number also decreased. Particularly, NaCl + L-tr 100 µM treatment exhibited a 25% increase in xylem conduit diameter, a 30% increase in midrib diameter, and a significant 15% increase in epidermis thickness compared to controls. Overall, NaCl + L-tr 100 µM treatment displayed values closest to controls across various parameters. This study suggests the potential utility of L-tr in mitigating salinity stress in pepper plants.

Thanks

The author thanks Servet Aras and Gökçen Yakupoğlu for the help with microscopy and for helping to obtain materials.

References

  • Amuthavalli, P., & Sivasankaramoorthy S. (2012). Effect of salt stress on the growth and photosynthetic pigments of pigeon pea (Cajanus cajan). Journal of Applied Pharmaceutical Science, 2, 131-133.
  • Antony, E., Sridhar, K., & Kumar, V. (2017). Effect of chemical sprays and management practices on Brachiaria ruziziensis seed, production. Field Crops Research, 211, 19-26. https://doi.org/10.1016/j.fcr.2017.06.009
  • Altunlu, H. (2020). The effects of mycorrhiza and rhizobacteria application on growth and some physiological parameters of pepper (Capsicum annuum L.) under salt stres. Ege Üniversitesi Ziraat Fakültesi Dergisi, 57 (4), 501-510. https://doi.org/10.20289/zfdergi.655491
  • Aras, S., Keles, H., & Eşitken, A. (2020). Silicon nutrition counteracts salt-induced damage associated with changes in biochemical responses in apple. Bragantia, 79, 1-7. https://doi.org/10.1590/1678-4499.20190153
  • Aras, S., Keles, H., & Bozkurt, E. (2021). Physiological and histological responses of peach plants grafted onto different rootstocks under calcium deficiency conditions. Scientia Horticulturae, 281, 109967. https://doi.org/10.1016/j.scienta.2021.109967
  • Ayers, R.S., & Westcot, D.W. (1985). Water quality for agriculture (Vol. 29, p. 174). Rome: Food and Agriculture Organization of the United Nations.
  • Cantrell, I.C., & Linderman. R.G. (2001). Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant and Soil, 233, 269-281. https://doi.org/10.1023/A:1010564013601
  • Chartzoulakis, K.S., & Klapaki, G. (2000). Effects of nacl salinity on growth and yield of two pepper cultivars. Acta Horticulturae, 511, 143-150. https://doi.org/10.17660/ActaHortic.2000.511.16
  • Coban, G.A. (2023). Effects of sodium nitroprusside on some physiological and histological responses of pepper plants exposed to salt stress. Chilean Journal of Agricultural Research, 83 (6), 682-691. https://doi.org/10.4067/S0718-58392023000600682
  • De Pascale, S., Ruggiero, C., Barbieri, G., & Maggio, A. (2003). Physiological responses of pepper to salinity and drought. Journal of the American Society for Horticultural Science, 128 (1), 48-54. https://doi.org/10.21273/JASHS.128.1.0048
  • Doğru, A., & Canavar, S. (2020). Physiological and biochemical components of salt tolerance in plants. Academic Platform Journal of Engineering and Science, 8 (1), 155-174. https://doi.org/10.21541/apjes.541620
  • Dolatabadian, A., Modarres Sanavy, S.A.M., & Ghanati, F. (2011). Effect of salinity on growth, xylem structure and anatomical characteristics of soybean. Notulae Scientia Biologicae, 3 (1), 41-45. https://doi.org/10.15835/nsb315627
  • Emirzeoğlu, C., & Basak, H. (2020). Determination of tolerance levels of central anatolian pepper genotypes to different salt concentrations. Uluslararasi Tarim ve Yaban Hayati Bilimleri Dergisi, 6 (2), 129-140. https://doi.org/10.24180/ijaws.689347
  • Frankenberger, W., & Arshad, M. (1991). Yield response of watermelon and muskmelon to L-tryptophan applied to the soil. Horticultural Science, 26, 35-37. https://doi.org/10.21273/HORTSCI.26.1.35
  • Ghoulam, C., Foursy, A., & Fares, K. (2002). Effects of salt stres on growth inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 47, 39-50. https://doi.org/10.1016/S0098-8472(01)00109-5
  • Gisbert-Mullor, R., Padilla, Y.G., Martínez-Cuenca, M.R., López-Galarza, S., & Calatayud, Á. (2021). Suitable rootstocks can alleviate the effects of heat stress on pepper plants. Scientia Horticulturae, 290, 110529. https://doi.org/10.1016/j.scienta.2021.110529
  • Güneş, A., İnal, A., Bagci, E.G., & Pilbeam, D.J. (2007). Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant Soil, 290, 103-114. https://doi.org/10.1007/s11104-006-9137-9
  • Hancı, F., & Tuncer, G. (2020). How do foliar application of melatonin and L-tryptophan affect lettuce growth parameters under salt stress? Turkish Journal of Agriculture-Food Science and Technology, 8 (4), 960-964. https://doi.org/10.24925/turjaf.v8i4.960-964.3224
  • Hoagland, D.R., & Arnon, D.I. (1950). The water-culture method for growing plants without soil. CAES. California, 1950.
  • Islam, F., Wang, J., Farooq, M.A., Yang, C., Jan, M., Mwamba, T.M., Hannan, F., Xu, L., & Zhou, W. (2019). Rice responses and tolerance to salt stress. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas J (eds) Advances in rice research for abiotic stress tolerance, pp.791-819. Woodhead Publishing, Cambridge.
  • Jamil, M., Kharal, M.A., Ahmad, M., Abbasi, G.H., Nazli, F., Hussain, A., & Akhtar, M.F.U.Z. (2018). Inducing salinity tolerance in red pepper (Capsicum annuum L.) through exogenous application of proline and L-tryptophan. Soil & Environment, 37 (2), 160-168. https://doi.org/10.25252/SE/18/31052
  • Kahveci, H., Bilginer, N., Diraz-Yildirim, E., Kulak, M., Yazar, E., Kocacinar, F., & Karaman, S. (2021). Priming with salicylic acid, β-carotene and tryptophan modulates growth, phenolics and essential oil components of Ocimum basilicum L. grown under salinity. Scientia Horticulturae, 281, 109964. https://doi.org/10.1016/j.scienta.2021.109964
  • Khazaei, Z., & Estaji, A. (2020). Effect of foliar application of ascorbic acid on sweet pepper (Capsicum annuum) plants under drought stress. Acta Physiologiae Plantarum, 42 (7), 1-12. https://doi.org/10.1007/s11738-020-03106-z
  • Kusvuran, S., & Dasgan, H.Y. (2017). Effects of drought stress on physiological and biochemical changes in Phaseolus vulgaris L. Legume Research-An International Journal, 40 (1), 55-62. https://doi.org/10.18805/lr.v0i0.7025
  • Lechthaler, S., Colangeli, P., Gazzabin, M., & Anfodillo, T. (2019). Axial anatomy of the leaf midrib provides new insights into the hydraulic architecture and cavitation patterns of Acer pseudoplatanus leaves. Journal of Experimental Botany, 70 (21), 6195-6201. https://doi.org/10.1093/jxb/erz347
  • Li, C., Tan, D.X., Liang, D., Chang, C., Jia, D.F., & Ma, F.W. (2015). Melatonin mediates the regulation of ABA metabolism, free-radical scavenging and stomatal behaviour in two Malus species under drought stress. Journal of Experimental Botany, 66, 669-680. https://doi.org/10.1093/jxb/eru476
  • Lutts, S., Kinet, J.M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78, 389-398. https://doi.org/10.1006/anbo.1996.0134
  • Mokarram, M., Pourghasemi, H.R., & Zhang, H. (2020). Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves. Frontiers of Environmental Science & Engineering, 14 (6), 1-13. https://doi.org/10.1007/s11783-020-1331-0
  • Mustafa, A., Imran, M., Ashraf, M., & Mahmood, K. (2018). Perspectives of using L-tryptophan for improving productivity of agricultural crops: A review. Pedosphere, 28 (1), 16-34.https://doi.org/10.1016/S1002-0160(18)60002-5
  • Rezazadeh, A., Ghasemnezhad, A., Barani, M., & Telmadarrehei, T. (2012). Effect of salinity on phenolic composition and antioxidant activity of artichoke (Cynara scolymus L.) leaves. Research Journal of Medicinal Plant, 6 (3), 245-252. https://scialert.net/abstract/?doi=rjmp.2012.245.252
  • Rice-Evans, C.A., Miller, N.J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20 (7), 933-956. https://doi.org/10.1016/0891-5849(95)02227-9
  • Siddikee, M.A., Glick, B.R., Chauhan, P.S., jong Yim, W., & Sa, T. (2011). Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiology and Biochemistry, 49 (4), 427-434. https://doi.org/10.1016/j.plaphy.2011.01.015
  • Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16 (3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
  • Sivakumar, J., Prashanth, J.E.P., Rajesh, N., Reddy, S.M., & Pinjari, O.B. (2020). Principal component analysis approach for comprehensive screening of salt stress-tolerant tomato germplasm at the seedling stage. Journal of Biosciences, 45, 141.
  • Smart, R.E., & Bingham, G.E. (1974). Rapid estimates of relative water content. Plant Physiology, 53, 258-260. https://doi.org/10.1104/pp.53.2.258
  • Sönmez, İ., & Kaplan, M. (2004). Demre yöresi seralarında toprak ve sulama sularının tuz içeriğinin belirlenmesi. Akdeniz University Journal of the Faculty of Agriculture, 17 (2), 155-160.
  • Taleisnik, E., Rodríguez, A.A., Bustos, D., Erdei, L., Ortega, L., & Senn, M.E. (2009). Leaf expansion in grasses under salt stress. Journal of Plant Physiology, 166 (11), 1123-1140. https://doi.org/10.1016/j.jplph.2009.03.015
  • Yilmaz, K., Akinci, I.E., & Akinci, S. (2004). Effect of salt stress on growth and Na, K contents of pepper (Capsicum annuum L.) in germination and seedling stages. Pakistan Journal of Biological Sciences, 7 (4), 606-610.
There are 38 citations in total.

Details

Primary Language English
Subjects Horticultural Production (Other)
Journal Section Araştırma Makalesi
Authors

Gökçe Aydöner Çoban 0000-0002-0851-8803

Early Pub Date December 3, 2024
Publication Date December 18, 2024
Submission Date April 23, 2024
Acceptance Date September 10, 2024
Published in Issue Year 2024 Volume: 29 Issue: 3

Cite

APA Aydöner Çoban, G. (2024). Impact of tryptophan on physiological and histological responses of pepper plants under salt stress. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 29(3), 885-895. https://doi.org/10.37908/mkutbd.1472590

22740137731737513771 13774 15432 1813713775 14624 15016 i2or 1857924881download