BibTex RIS Cite

-

Year 2015, Volume: 20 Issue: 1, 72 - 79, 04.06.2015

Abstract

Cultured plants are often exposed to some environmental stresses such as salinity, drought, high or low temperature, which either restrict or negatively affect the productivity. These stress factors greatly limits productivity at agricultural production in the world and our country. Traditional breeding methods, biotechnological approaches, molecular marker and transgenic technologies and applied to cope with stress conditions, and development of tolerant species and genotypes are among the most efficient solutions in plant growth. However, these methods can usually be time consuming, expensive and rather complicated. Recently, scientists have intensively studied the use of plant growth promoting bacteria (PGPB) in conferred tolerance to plants growing under stress conditions. It was concluded that increasing N fixation of PGPB, the solubility of phosphorus, water use efficiency and phytohormone production (e.g. auxin, cytokinin or gibberellin), and activating the uptake of nutrients by plants or decreasing ethylene levels through enzymatic methods put a positive effect on growth and yield of plants growing under abiotic stress conditions. In this review, possibilities of using and the effect of PGPB on growth and crop yield of plants grown under drought stress conditions were evaluated

References

  • Kaynaklar
  • Aldesuquy HS, Mansour FA, Abo-Hamed SA, 1998. Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiologica, 43:465–470.
  • Ansary MH, Rahmani HA, Ardakani MR, Paknejad F, Habibi D, Mafakheri S, 2012. Effect of Pseudomonas fluorescent on proline and phytohormonal status of maize (Zea mays L.) under water deficit stress. Annals of Biological Research, 3 (2):1054-1062.
  • Armada E, Roldán A, Azcon R, 2014. Differential activity of autochthonous bacteria in controlling drought stress in native Lavandula and Salvia plants species under drought conditions. In Natural Arid Soil. Microbial Ecology, 67:410–420.
  • Ashraf M, Foolad, MR, 2007. Roles of glycine betaine and proline in improving plant abiotic stres resistance. Environmental and Experimental Botany, 59: 206-216.
  • Bhattacharyya PN, Jha DK, 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28: 1327–1350.
  • Burd GI, Dixon DG, Glick BR, 2000. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology, 463: 237–235.
  • Chakraborty U, Chakraborty BN, Chakraborty AP, Dey PL, 2013. Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World Journal of Microbiology and Biotechnology, 29:789–803.
  • Chenu C, Roberson EB, 1996. Diffusion of glucose in microbial extracellular polysaccharide as affected by water potential. Soil Biology & Biochemistry, 28: 877–884.
  • Coleman-Derr D, Tringe S, 2014. Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance. Frontiers in Microbiology, 5:283, 6s.
  • Cowan AK, Cairns ALP, Bartels-Rahm B, 1999. Regulation of abscisic acid metabolism: towards a metabolic basis for abscisic acid-cytokinin antagonism. Journal of Experimental Botany, 50: 595–603.
  • Crowe JH, Crowe LM, 1992. Membrane integrity in anhydrobiotic organisms: toward a mechanism for stabilizing dry cells. In: Somero GN, Osmond CB, Bolis CL (Eds) Water and life, 1st ed.Springer, Berlin, pp. 87–103.
  • Çakmakçı R, 2005. Bitki gelişimini teşvik eden rizobakterilerin tarımda kullanımı. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 36:1, 97-107.
  • Çakmakçı R, Erat M, Erdoğan Ü, Dönmez F, 2007. The influence of plant growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. Journal of Plant Nutrition and Soilscience, 170: 288-295.
  • Dalal M, Dani RG, Kumar PA, 2006. Current trends in the genetic engineering of vegetable crops. Scientia Horticulturae, 107: 215–225.
  • Decoteau DR, 2000. Vegetable Crops. Prentice-Hall Inc. New Jersey, USA. pp. 464.
  • Denby K, Gehring C, 2005. Engineering drought and salinity tolerance in plants: lessons from genome-wide expression profiling in arabidopsis. Trends in Biotechnology, 23:11, 547-552.
  • Dodd IC, Belimov AA, Sobeih WY, Safronova VI, Grierson D, Davies WJ, 2004. Will modifying plant ethylene status improve plant productivity in water-limited environments?. 4th International Crop Science Congress, Brisbane, Australia, 26 September - 1 October. (Ed: Fischer T, Turner N, Angus J, McIntyre L, Robertson M, Borrell A, Lloyd A) The Regional Institute Ltd., Gosford, NSW, Australia.
  • Glick BR, 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41: 109-117.
  • Glick BR, 2005. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiology Letters, 251: 1–7.
  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B, 2007. Promotion of plant growth by bacterial ACC deaminase. Critical Reviews in Plant Sciences, 26: 227–242.
  • Gong HJ, Zhu XY, Chen KM, Wang SM, Zhang CL, 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169:313–321.
  • Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW, 2013. Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. Journal of Plant Growth Regulation, 32:245–258.
  • Heidari M, Golpayegani A, 2012. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). Journal of the Saudi Society of Agricultural Sciences, 11:57–61.
  • Honma M, Shimomura T, 1978. Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agricultural and Biological Chemistry, 42: 1825–1831.
  • Jacobson CB, Pasternak JJ, Glick BR, 1994. Partial purification and characterization of ACC deaminase from the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2, Canadian Journal of Microbiology, 40:1019–1025.
  • Kasim WA, Osman ME, Omar MN, Abd El-Daim IA Meijer B, 2013.Control of drought stress in wheat using plant-growthpromoting bacteria. Journal of Plant Growth Regulation, 32:122–130.
  • Kijne JW, 2006. Abiotic stress and water scarcity: identifying and resolving conflicts from plant level to global level. Field Crops Research, 97: 3–18.
  • Kohler J, Hernández JA, Fuensanta Caravaca F, Roldán A, 2008. Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Functional Plant Biology: FPB, 35: 141–151.
  • Maggio A, De- Pascale S, Ruggiero C, Barbieri G, 2005. Physiological response of field-grown cabbage to salinity and drought stres. European Jounal of Agronomy, 23: 57–67.
  • Marcinska I, Czyczyło-Mysza I, Skrzypek E, Filek M, Grzesiak S, Grzesiak MT, Janowiak F., Hura T, Dziurka M, Dziurka K, Nowakowska A, Quarrie SA, 2013. Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta physiologiae plantarum, 35:451–461.
  • Marulanda A, Barea JM, Azco´n R, 2009. Stimulation of plant growth and drought tolerance by native microorganisms (AM Fungi and Bacteria) from dry environments: mechanisms related to bacterial effectiveness. Journal of Plant Growth Regulation, 28:115–124
  • Mayak S, Tirosh T, Glick BR, 2004a. Plant Growth-promoting bacteria that confer resistance to water stress in tomatoes and pepper. Plant Science, 166: 525-530.
  • McCollum JP, 1992. Vegetable crops. Interstate Publishers Inc. Danville Illinois, USA.
  • Naveed M, Hussain MB, Zahir AZ, Mitter B, Sessitsch A, 2014. Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regulation, 73:121–131.
  • Patten C, Glick BR, 1996. Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 42: 207–220.
  • Pinton R, Varanini Z, Nannipieri P, 2001. The Rhizosphere as a site of biochemical interactions among soil components, plants, and microorganisms, In: Pinton, R., Varanini, Z., Nannipieri, P. (Eds.), The Rhizosphere. Mercel Dekker, Inc, New York, USA, pp. 1–18.
  • Potts M, 1994. Desiccation tolerance of prokaryotes. Microbiology Reviews, 58, 755-805.
  • Sadeghi A, Karimi E, Abaszadeh Dahaji P, Javid MG, Dalvve Y, Askari H, 2012. Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World Journal of Microbiology & Biotechnology, 28:1503–1509.
  • Safranova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA, 2006. Root-associated bacteria containing 1-aminocyclopropane-1- carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biology and Fertility of Soils, 42: 267–272.
  • Sandhya V, Ali Sk. Z, Grover M, Reddy G, Venkateswarlu B, 2009. Alleviation Of Drought Stress Effects In Sunflower Seedlings By The Exopolysaccharides Producing Pseudomonas putida Strain GAP-P45. Biology and Fertility of Soils, 46:17–26.
  • Sandhya V, Ali Sk. Z, Venkateswarlu B, Reddy G, Grover M, 2010. Effect of osmotic stress on plant growth promoting Pseudomonas spp. Archives of Microbiology, 192:867–876.
  • Saravanakumar D, Kavino M, Raguchander T, Subbian P, Samiyappan R, 2011. Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol Plant, 33:203–209.
  • Sarma RK, Saikia R, 2014. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21 Plant Soil, 377:111–126.
  • Scandalios JG, 1994. Regulation and properties of plant catalases. In: foyer ch, mullineaux pm (eds) causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, Florida, pp. 275–315.
  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ, 2002. Novel Plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Applied and Environmental Microbiology, 68:2161–2171.
  • Vardharajula S, Ali SZ, Grover M, Reddy G, Bandi V, 2011. Drought-tolerant plant growth promoting Bacillus spp.: Effect on growth, osmolytes, and antioxidant status of maize under drought stress. Journal of Plant Interactions, 6:1–14
  • Vinocur B, Altman A, 2005. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology, 16:123–132.
  • Wu D, Wang G, 2000. Interaction of CO2 enrichment and drought on growth, water use, and yield of broad bean (Vicia faba). Environmental and Experimental Botany, 43: 131–139.
  • Yang J, Kloepper JW, Ryu CM, 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends In Plant Science, 14: 1-4.
  • Yuwono T, Handayani D, Soedarsono J, 2005. The role of osmotolerant rhizobacteria in rice growth different drought conditions. Australian Journal of Agricultural Research, 56: 715-721.
  • Zahir ZA, Munir A, Asghar HN, Arshad M, Shaharoona B, 2008. Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol, 18:958–963

Bitki Gelişimini Teşvik Eden Bakteri Uygulamalarının Bitkilerde Kuraklığa Toleransı Artırmadaki Etkileri

Year 2015, Volume: 20 Issue: 1, 72 - 79, 04.06.2015

Abstract

Kültür bitkileri verimliliği sınırlayan tuzluluk, kuraklık, yüksek veya düşük sıcaklık gibi bazı çevresel streslere maruz kalmaktadırlar. Dünyada ve ülkemizde söz konusu stres faktörleri tarımsal üretimde verimliliği önemli ölçüde sınırlamaktadır. Stres koşullarıyla mücadelede geleneksel ıslah metotları, biyoteknolojik yaklaşımlar, moleküler marker ve transgenik teknolojilerin kullanımı ile dayanıklı tür, çeşit veya genotiplerin geliştirilmesi bitkisel üretimde en etkin çözüm yolları arasındadır. Ancak bu yöntemler genellikle zaman alıcı, pahalı ve oldukça karmaşık olabilmektedir. Son zamanlarda, stres koşullarında yetiştirilen bitkilere tolerans kazandırmada bitki gelişimini teşvik eden bakteri kullanımı bilim insanları tarafından yoğun olarak araştırılmaktadır. Bitki gelişimini teşvik eden bakterilerin azot fiksasyonuyla, fosforun çözünürlüğünü, su kullanım etkinliğini ve bitkisel hormon üretimini (oksin, stokinin ve giberellin) artırarak, besin elementlerinin bitki tarafından alımını etkinleştirerek veya bitkide etilen seviyesinin enzimatik yolla azaltmasıyla abiotik stres şartlarında yetiştirilen bitkilerde bitki gelişimi ve verim üzerine olumlu etki yapabildikleri tespit edilmiştir. Bu derleme çalışmasında, bitki gelişimini teşvik eden bakterilerin (PGPB, Plant Growth-Promoting Bacteria), kuraklık stresi şartlarında yetiştirilen bitkilerde bitki gelişimi ve verim üzerine etkileri ve kullanım olanakları incelenmiştir.

Anahtar Kelimeler: Bakteri, Bitki gelişimi, Kuraklık Stresi, Tolerans, Aminosiklopropan Karboksilat Deaminaze (ACCD), Stres Etileni

References

  • Kaynaklar
  • Aldesuquy HS, Mansour FA, Abo-Hamed SA, 1998. Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiologica, 43:465–470.
  • Ansary MH, Rahmani HA, Ardakani MR, Paknejad F, Habibi D, Mafakheri S, 2012. Effect of Pseudomonas fluorescent on proline and phytohormonal status of maize (Zea mays L.) under water deficit stress. Annals of Biological Research, 3 (2):1054-1062.
  • Armada E, Roldán A, Azcon R, 2014. Differential activity of autochthonous bacteria in controlling drought stress in native Lavandula and Salvia plants species under drought conditions. In Natural Arid Soil. Microbial Ecology, 67:410–420.
  • Ashraf M, Foolad, MR, 2007. Roles of glycine betaine and proline in improving plant abiotic stres resistance. Environmental and Experimental Botany, 59: 206-216.
  • Bhattacharyya PN, Jha DK, 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28: 1327–1350.
  • Burd GI, Dixon DG, Glick BR, 2000. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology, 463: 237–235.
  • Chakraborty U, Chakraborty BN, Chakraborty AP, Dey PL, 2013. Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World Journal of Microbiology and Biotechnology, 29:789–803.
  • Chenu C, Roberson EB, 1996. Diffusion of glucose in microbial extracellular polysaccharide as affected by water potential. Soil Biology & Biochemistry, 28: 877–884.
  • Coleman-Derr D, Tringe S, 2014. Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance. Frontiers in Microbiology, 5:283, 6s.
  • Cowan AK, Cairns ALP, Bartels-Rahm B, 1999. Regulation of abscisic acid metabolism: towards a metabolic basis for abscisic acid-cytokinin antagonism. Journal of Experimental Botany, 50: 595–603.
  • Crowe JH, Crowe LM, 1992. Membrane integrity in anhydrobiotic organisms: toward a mechanism for stabilizing dry cells. In: Somero GN, Osmond CB, Bolis CL (Eds) Water and life, 1st ed.Springer, Berlin, pp. 87–103.
  • Çakmakçı R, 2005. Bitki gelişimini teşvik eden rizobakterilerin tarımda kullanımı. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 36:1, 97-107.
  • Çakmakçı R, Erat M, Erdoğan Ü, Dönmez F, 2007. The influence of plant growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. Journal of Plant Nutrition and Soilscience, 170: 288-295.
  • Dalal M, Dani RG, Kumar PA, 2006. Current trends in the genetic engineering of vegetable crops. Scientia Horticulturae, 107: 215–225.
  • Decoteau DR, 2000. Vegetable Crops. Prentice-Hall Inc. New Jersey, USA. pp. 464.
  • Denby K, Gehring C, 2005. Engineering drought and salinity tolerance in plants: lessons from genome-wide expression profiling in arabidopsis. Trends in Biotechnology, 23:11, 547-552.
  • Dodd IC, Belimov AA, Sobeih WY, Safronova VI, Grierson D, Davies WJ, 2004. Will modifying plant ethylene status improve plant productivity in water-limited environments?. 4th International Crop Science Congress, Brisbane, Australia, 26 September - 1 October. (Ed: Fischer T, Turner N, Angus J, McIntyre L, Robertson M, Borrell A, Lloyd A) The Regional Institute Ltd., Gosford, NSW, Australia.
  • Glick BR, 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41: 109-117.
  • Glick BR, 2005. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiology Letters, 251: 1–7.
  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B, 2007. Promotion of plant growth by bacterial ACC deaminase. Critical Reviews in Plant Sciences, 26: 227–242.
  • Gong HJ, Zhu XY, Chen KM, Wang SM, Zhang CL, 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169:313–321.
  • Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW, 2013. Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. Journal of Plant Growth Regulation, 32:245–258.
  • Heidari M, Golpayegani A, 2012. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). Journal of the Saudi Society of Agricultural Sciences, 11:57–61.
  • Honma M, Shimomura T, 1978. Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agricultural and Biological Chemistry, 42: 1825–1831.
  • Jacobson CB, Pasternak JJ, Glick BR, 1994. Partial purification and characterization of ACC deaminase from the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2, Canadian Journal of Microbiology, 40:1019–1025.
  • Kasim WA, Osman ME, Omar MN, Abd El-Daim IA Meijer B, 2013.Control of drought stress in wheat using plant-growthpromoting bacteria. Journal of Plant Growth Regulation, 32:122–130.
  • Kijne JW, 2006. Abiotic stress and water scarcity: identifying and resolving conflicts from plant level to global level. Field Crops Research, 97: 3–18.
  • Kohler J, Hernández JA, Fuensanta Caravaca F, Roldán A, 2008. Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Functional Plant Biology: FPB, 35: 141–151.
  • Maggio A, De- Pascale S, Ruggiero C, Barbieri G, 2005. Physiological response of field-grown cabbage to salinity and drought stres. European Jounal of Agronomy, 23: 57–67.
  • Marcinska I, Czyczyło-Mysza I, Skrzypek E, Filek M, Grzesiak S, Grzesiak MT, Janowiak F., Hura T, Dziurka M, Dziurka K, Nowakowska A, Quarrie SA, 2013. Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta physiologiae plantarum, 35:451–461.
  • Marulanda A, Barea JM, Azco´n R, 2009. Stimulation of plant growth and drought tolerance by native microorganisms (AM Fungi and Bacteria) from dry environments: mechanisms related to bacterial effectiveness. Journal of Plant Growth Regulation, 28:115–124
  • Mayak S, Tirosh T, Glick BR, 2004a. Plant Growth-promoting bacteria that confer resistance to water stress in tomatoes and pepper. Plant Science, 166: 525-530.
  • McCollum JP, 1992. Vegetable crops. Interstate Publishers Inc. Danville Illinois, USA.
  • Naveed M, Hussain MB, Zahir AZ, Mitter B, Sessitsch A, 2014. Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regulation, 73:121–131.
  • Patten C, Glick BR, 1996. Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 42: 207–220.
  • Pinton R, Varanini Z, Nannipieri P, 2001. The Rhizosphere as a site of biochemical interactions among soil components, plants, and microorganisms, In: Pinton, R., Varanini, Z., Nannipieri, P. (Eds.), The Rhizosphere. Mercel Dekker, Inc, New York, USA, pp. 1–18.
  • Potts M, 1994. Desiccation tolerance of prokaryotes. Microbiology Reviews, 58, 755-805.
  • Sadeghi A, Karimi E, Abaszadeh Dahaji P, Javid MG, Dalvve Y, Askari H, 2012. Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World Journal of Microbiology & Biotechnology, 28:1503–1509.
  • Safranova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA, 2006. Root-associated bacteria containing 1-aminocyclopropane-1- carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biology and Fertility of Soils, 42: 267–272.
  • Sandhya V, Ali Sk. Z, Grover M, Reddy G, Venkateswarlu B, 2009. Alleviation Of Drought Stress Effects In Sunflower Seedlings By The Exopolysaccharides Producing Pseudomonas putida Strain GAP-P45. Biology and Fertility of Soils, 46:17–26.
  • Sandhya V, Ali Sk. Z, Venkateswarlu B, Reddy G, Grover M, 2010. Effect of osmotic stress on plant growth promoting Pseudomonas spp. Archives of Microbiology, 192:867–876.
  • Saravanakumar D, Kavino M, Raguchander T, Subbian P, Samiyappan R, 2011. Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol Plant, 33:203–209.
  • Sarma RK, Saikia R, 2014. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21 Plant Soil, 377:111–126.
  • Scandalios JG, 1994. Regulation and properties of plant catalases. In: foyer ch, mullineaux pm (eds) causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, Florida, pp. 275–315.
  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ, 2002. Novel Plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Applied and Environmental Microbiology, 68:2161–2171.
  • Vardharajula S, Ali SZ, Grover M, Reddy G, Bandi V, 2011. Drought-tolerant plant growth promoting Bacillus spp.: Effect on growth, osmolytes, and antioxidant status of maize under drought stress. Journal of Plant Interactions, 6:1–14
  • Vinocur B, Altman A, 2005. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology, 16:123–132.
  • Wu D, Wang G, 2000. Interaction of CO2 enrichment and drought on growth, water use, and yield of broad bean (Vicia faba). Environmental and Experimental Botany, 43: 131–139.
  • Yang J, Kloepper JW, Ryu CM, 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends In Plant Science, 14: 1-4.
  • Yuwono T, Handayani D, Soedarsono J, 2005. The role of osmotolerant rhizobacteria in rice growth different drought conditions. Australian Journal of Agricultural Research, 56: 715-721.
  • Zahir ZA, Munir A, Asghar HN, Arshad M, Shaharoona B, 2008. Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol, 18:958–963
There are 52 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Aysel Samancıoğlu

Ertan Yıldırım

Publication Date June 4, 2015
Published in Issue Year 2015 Volume: 20 Issue: 1

Cite

APA Samancıoğlu, A., & Yıldırım, E. (2015). Bitki Gelişimini Teşvik Eden Bakteri Uygulamalarının Bitkilerde Kuraklığa Toleransı Artırmadaki Etkileri. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, 20(1), 72-79.
AMA Samancıoğlu A, Yıldırım E. Bitki Gelişimini Teşvik Eden Bakteri Uygulamalarının Bitkilerde Kuraklığa Toleransı Artırmadaki Etkileri. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi. September 2015;20(1):72-79.
Chicago Samancıoğlu, Aysel, and Ertan Yıldırım. “Bitki Gelişimini Teşvik Eden Bakteri Uygulamalarının Bitkilerde Kuraklığa Toleransı Artırmadaki Etkileri”. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi 20, no. 1 (September 2015): 72-79.
EndNote Samancıoğlu A, Yıldırım E (September 1, 2015) Bitki Gelişimini Teşvik Eden Bakteri Uygulamalarının Bitkilerde Kuraklığa Toleransı Artırmadaki Etkileri. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi 20 1 72–79.
IEEE A. Samancıoğlu and E. Yıldırım, “Bitki Gelişimini Teşvik Eden Bakteri Uygulamalarının Bitkilerde Kuraklığa Toleransı Artırmadaki Etkileri”, Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, vol. 20, no. 1, pp. 72–79, 2015.
ISNAD Samancıoğlu, Aysel - Yıldırım, Ertan. “Bitki Gelişimini Teşvik Eden Bakteri Uygulamalarının Bitkilerde Kuraklığa Toleransı Artırmadaki Etkileri”. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi 20/1 (September 2015), 72-79.
JAMA Samancıoğlu A, Yıldırım E. Bitki Gelişimini Teşvik Eden Bakteri Uygulamalarının Bitkilerde Kuraklığa Toleransı Artırmadaki Etkileri. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi. 2015;20:72–79.
MLA Samancıoğlu, Aysel and Ertan Yıldırım. “Bitki Gelişimini Teşvik Eden Bakteri Uygulamalarının Bitkilerde Kuraklığa Toleransı Artırmadaki Etkileri”. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, vol. 20, no. 1, 2015, pp. 72-79.
Vancouver Samancıoğlu A, Yıldırım E. Bitki Gelişimini Teşvik Eden Bakteri Uygulamalarının Bitkilerde Kuraklığa Toleransı Artırmadaki Etkileri. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi. 2015;20(1):72-9.