Research Article
BibTex RIS Cite

Jeomanyetik fırtına süresince NeQuick2 Modelinin Performansı

Year 2019, Volume: 7 Issue: 2, 689 - 696, 26.12.2019
https://doi.org/10.18586/msufbd.650664

Abstract

Bu
çalışmanın amacı, NeQuick 2 modelinin jeomanyetik fırtına sürecinde
performansını değerlendirmektir. Bu amaçla, NeQuick 2 modelinden ve GPS
alıcısından elde edilen dikey toplam elektron içeriği (VTEC) değerleri 05-09 Eylül
2017 tarihleri arasında 5 farklı enlem bölgesinden seçilen beş istasyon için
karşılaştırıldı. Karşılaştırma korelasyon, kök ortalama kare hatası (RMSE) ve
fark alma yöntemleri ile yapıldı. NeQuick 2 ve GPS tarafından elde edilen TEC
değerlerinin değişimi, faz kaymaları ve genlik farkları olmasına rağmen,
genellikle benzerdir. Maksimum korelasyon fırtına öncesi sakin günlerde ekvator
bölgesinde gözlenirken (5-6 Eylül) ekvatordan uzaklaştıkça korelasyon katsayısı
azalmıştır. Maksimum korelasyon katsayısı fırtınanın başlangıç, ana ve dönüş
evrelerinde güney yarımkürenin orta enleminde hesaplanmıştır. Ek olarak, en
düşük korelasyon kuzey yarımkürenin yüksek enlemlerinde belirlendi. Tüm
istasyonlarda (05, 07, 08 / 09/2017 günlerinde NYAL istasyonu hariç) hesaplanan
farkın maksimum değeri minimum değerden daha küçüktür. GPS VTEC değerlerinin
NeQuick 2 model değerlerinden daha yüksek olduğu durumlarda, fark genellikle
düşüktür, aksine NeQuick 2 model değerleri GPS VTEC değerlerinden daha büyük
olduğunda, fark oldukça büyüktür. Bu durum, NeQuick 2 modelinin genellikle TEC
değerlerini abarttığını göstermektedir.

References

  • [1] Nava, B., et al., A new version of the NeQuick ionosphere electron density model. 2008. 70(15): p. 1856-1862.
  • [2] Li, S., et al., Global TEC prediction performance assessment of IRI-2016 model based on EOF decomposition. Ann. Geophys. Discuss., 2019. 2019: p. 1-17.
  • [3] Bilitza, D.J.R.S., International reference ionosphere 2000. 2001. 36(2): p. 261-275.
  • [4] Di Giovanni, G. and S.J.A.i.S.R. Radicella, An analytical model of the electron density profile in the ionosphere. 1990. 10(11): p. 27-30.
  • [5] Radicella, S.M. and M.-L. Zhang, The improved DGR analytical model of electron density height profile and total electron content in the ionosphere. 1995.
  • [6] Leitinger, R., M.-L. Zhang, and S.M.J.A.o.G. Radicella, An improved bottomside for the ionospheric electron density model NeQuick. 2005. 48(3).
  • [7] Coïsson, P., et al., Topside electron density in IRI and NeQuick: Features and limitations. 2006. 37(5): p. 937-942.
  • [8] Radicella, S.M.J.A.o.g., The NeQuick model genesis, uses and evolution. 2009. 52(3-4): p. 417-422.
  • [9] Bilitza, D. and B.W.J.A.i.s.r. Reinisch, International reference ionosphere 2007: Improvements and new parameters. 2008. 42(4): p. 599-609.
  • [10] Okoh, D., et al., A comparison of IRI‐TEC predictions with GPS‐TEC measurements over Nsukka, Nigeria. 2012. 10(10).
  • [11] Coïsson, P., et al., NeQuick bottomside analysis at low latitudes. 2008. 70(15): p. 1911-1918.
  • [12] Okoh, D., et al., Assessment of the NeQuick-2 and IRI-Plas 2017 models using global and long-term GNSS measurements. 2018. 170: p. 1-10.
  • [13] Ezquer, R.G., et al., NeQuick 2 and IRI Plas VTEC predictions for low latitude and South American sector. 2018. 61(7): p. 1803-1818.
  • [14] Leong, S., et al., Assessment of ionosphere models at Banting: Performance of IRI-2007, IRI-2012 and NeQuick 2 models during the ascending phase of Solar Cycle 24. 2015. 55(8): p. 1928-1940.
  • [15] Atıcı, R., S.J.G. Sağır, and Geodynamics, Global investigation of the ionospheric irregularities during the severe geomagnetic storm on September 7–8, 2017. 2019.
  • [16] Arikan, F., et al., Estimation of single station interfrequency receiver bias using GPS‐TEC. Radio Science, 2008. 43(4).
  • [17] Nayir, H., et al., Total electron content estimation with Reg‐Est. Journal of Geophysical Research: Space Physics, 2007. 112(A11).[18] Sezen, U., et al., Online, automatic, near‐real time estimation of GPS‐TEC: IONOLAB‐TEC. Space Weather, 2013. 11(5): p. 297-305.

Performance of the NeQuick 2 model during the geomagnetic storm

Year 2019, Volume: 7 Issue: 2, 689 - 696, 26.12.2019
https://doi.org/10.18586/msufbd.650664

Abstract

The
aim of this study is to evaluate the performance of NeQuick 2 model during
geomagnetic storm process. For this purpose, vertical total electron content
(VTEC) values obtained from NeQuick 2 model and GPS (Global Positioning System)
receiver were compared for five stations selected from 5 different latitude
regions during 05-09 September 2017. Comparison was made by correlation, root
mean square error (RMSE) and difference taking methods. The variation of VTEC values
obtained by NeQuick 2 and GPS is generally similar, although there are phase
shifts and amplitude differences. The maximum correlation was observed in the
equator region on the quiet days before the storm (September 5-6), but the
correlation coefficient decreased as it moved away from the equator. The
maximum correlation coefficient was calculated at the mid-latitude of the
southern hemisphere during the initial, main and return phases of the storm. In
addition, the lowest correlation was determined at high latitudes of the
northern hemisphere. At all stations (except NYAL station on 05, 07, 08 /
09/2017), the maximum value of the calculated difference is smaller than the
minimum value. When the GPS VTEC values are higher than the NeQuick 2 model
values, the difference is generally low, on the contrary when the NeQuick 2
model values are greater than the GPS VTEC values, the difference is quite
large. This shows that the NeQuick 2 model generally overestimates the TEC
values

References

  • [1] Nava, B., et al., A new version of the NeQuick ionosphere electron density model. 2008. 70(15): p. 1856-1862.
  • [2] Li, S., et al., Global TEC prediction performance assessment of IRI-2016 model based on EOF decomposition. Ann. Geophys. Discuss., 2019. 2019: p. 1-17.
  • [3] Bilitza, D.J.R.S., International reference ionosphere 2000. 2001. 36(2): p. 261-275.
  • [4] Di Giovanni, G. and S.J.A.i.S.R. Radicella, An analytical model of the electron density profile in the ionosphere. 1990. 10(11): p. 27-30.
  • [5] Radicella, S.M. and M.-L. Zhang, The improved DGR analytical model of electron density height profile and total electron content in the ionosphere. 1995.
  • [6] Leitinger, R., M.-L. Zhang, and S.M.J.A.o.G. Radicella, An improved bottomside for the ionospheric electron density model NeQuick. 2005. 48(3).
  • [7] Coïsson, P., et al., Topside electron density in IRI and NeQuick: Features and limitations. 2006. 37(5): p. 937-942.
  • [8] Radicella, S.M.J.A.o.g., The NeQuick model genesis, uses and evolution. 2009. 52(3-4): p. 417-422.
  • [9] Bilitza, D. and B.W.J.A.i.s.r. Reinisch, International reference ionosphere 2007: Improvements and new parameters. 2008. 42(4): p. 599-609.
  • [10] Okoh, D., et al., A comparison of IRI‐TEC predictions with GPS‐TEC measurements over Nsukka, Nigeria. 2012. 10(10).
  • [11] Coïsson, P., et al., NeQuick bottomside analysis at low latitudes. 2008. 70(15): p. 1911-1918.
  • [12] Okoh, D., et al., Assessment of the NeQuick-2 and IRI-Plas 2017 models using global and long-term GNSS measurements. 2018. 170: p. 1-10.
  • [13] Ezquer, R.G., et al., NeQuick 2 and IRI Plas VTEC predictions for low latitude and South American sector. 2018. 61(7): p. 1803-1818.
  • [14] Leong, S., et al., Assessment of ionosphere models at Banting: Performance of IRI-2007, IRI-2012 and NeQuick 2 models during the ascending phase of Solar Cycle 24. 2015. 55(8): p. 1928-1940.
  • [15] Atıcı, R., S.J.G. Sağır, and Geodynamics, Global investigation of the ionospheric irregularities during the severe geomagnetic storm on September 7–8, 2017. 2019.
  • [16] Arikan, F., et al., Estimation of single station interfrequency receiver bias using GPS‐TEC. Radio Science, 2008. 43(4).
  • [17] Nayir, H., et al., Total electron content estimation with Reg‐Est. Journal of Geophysical Research: Space Physics, 2007. 112(A11).[18] Sezen, U., et al., Online, automatic, near‐real time estimation of GPS‐TEC: IONOLAB‐TEC. Space Weather, 2013. 11(5): p. 297-305.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Selçuk Sağır 0000-0002-5698-0154

Ramazan Atıcı 0000-0001-7884-0112

Publication Date December 26, 2019
Published in Issue Year 2019 Volume: 7 Issue: 2

Cite

APA Sağır, S., & Atıcı, R. (2019). Performance of the NeQuick 2 model during the geomagnetic storm. Mus Alparslan University Journal of Science, 7(2), 689-696. https://doi.org/10.18586/msufbd.650664
AMA Sağır S, Atıcı R. Performance of the NeQuick 2 model during the geomagnetic storm. MAUN Fen Bil. Dergi. December 2019;7(2):689-696. doi:10.18586/msufbd.650664
Chicago Sağır, Selçuk, and Ramazan Atıcı. “Performance of the NeQuick 2 Model During the Geomagnetic Storm”. Mus Alparslan University Journal of Science 7, no. 2 (December 2019): 689-96. https://doi.org/10.18586/msufbd.650664.
EndNote Sağır S, Atıcı R (December 1, 2019) Performance of the NeQuick 2 model during the geomagnetic storm. Mus Alparslan University Journal of Science 7 2 689–696.
IEEE S. Sağır and R. Atıcı, “Performance of the NeQuick 2 model during the geomagnetic storm”, MAUN Fen Bil. Dergi., vol. 7, no. 2, pp. 689–696, 2019, doi: 10.18586/msufbd.650664.
ISNAD Sağır, Selçuk - Atıcı, Ramazan. “Performance of the NeQuick 2 Model During the Geomagnetic Storm”. Mus Alparslan University Journal of Science 7/2 (December 2019), 689-696. https://doi.org/10.18586/msufbd.650664.
JAMA Sağır S, Atıcı R. Performance of the NeQuick 2 model during the geomagnetic storm. MAUN Fen Bil. Dergi. 2019;7:689–696.
MLA Sağır, Selçuk and Ramazan Atıcı. “Performance of the NeQuick 2 Model During the Geomagnetic Storm”. Mus Alparslan University Journal of Science, vol. 7, no. 2, 2019, pp. 689-96, doi:10.18586/msufbd.650664.
Vancouver Sağır S, Atıcı R. Performance of the NeQuick 2 model during the geomagnetic storm. MAUN Fen Bil. Dergi. 2019;7(2):689-96.