Research Article
BibTex RIS Cite

Comparison of the Empirical Ionospheric Models During Three Severe Geomagnetic Storm Occurred in 2015

Year 2022, Volume: 10 Issue: 2, 977 - 991, 26.12.2022
https://doi.org/10.18586/msufbd.1176184

Abstract

The geomagnetic field acts as both the shield and the electron density regulator for the ionosphere. The effect of the geomagnetic field on the ionosphere can be examined separately for the geomagnetically quiet and disturbed days. In the current study, the performance of the ionospheric models was evaluated for three different severe geomagnetic storms periods during the year of 2015, which was in the beginning of the descending phase of the 24th solar cycle. These three storms occurred during 17-18 March, 22-23 June and 20-21 December of year 2015 in which first one expressed as St. Patrick's Day geomagnetic storm. The relationship between Total Electron Content (TEC) was measured by Global Positioning System (GPS) and evaluated with NeQuick 2, IRI 2016, IRI Plas (without any input- “IRI Plas”) and IRI Plas TEC (with TEC input- “IRI Plas TEC”) global models at three Turkey IGS station namely Ankara (39.57 N, 32.53 E), Istanbul (40.58 N, 29.05 E) and Erzurum (40.39 N, 40.42 E) investigated. The comparison was made separately for pre-storm, during storm and post-storm by using the Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) metrics and symmetric Kullback-Leibler Distance (KLD) methods. Among the empirical models, IRI Plas TEC is generally present to be better results than other models for all storm processes. It can be stated that IRI 2016 is better in the storm return phase compared to other phases of the storm.

Thanks

This submission is the extended version of the work presented in URSITR2021 and intended for the cluster related to this conference. We would like to thank the IONOLAB group and TNPGN-Active, Turkish National Permanent GPS Network to founders for TEC data, the International GNSS Service for access to GNSS data used in this study; and the OMNIWeb Plus NASA/Goddard Space Flight Center service for the data on geomagnetic and solar flux indices. This study has been studied as a Master's thesis at Institute of Science of Mus Alparslan University.

References

  • [1] Jakowski N, Heise S, Stankov SM, Tsybulya K. Remote sensing of the ionosphere by space-based GNSS observations. Advances in Space Research. 2006;38(11),2337–2343. doi:https://doi.org/10.1016/j.asr.2005.07.015
  • [2] Radicella S, Nava B. NeQuick model: Origin and evolution. 2010. p. 422–425. doi:10.1109/ISAPE.2010.5696491
  • [3] Zhang Z, Moore JC. Chapter 6 - Empirical Orthogonal Functions. In: Zhang Z, Moore JC, editors. Mathematical and Physical Fundamentals of Climate Change. Boston: Elsevier; 2015. p. 161–197. https://www.sciencedirect.com/science/article/pii/B9780128000663000061. doi:10.1016/B978-0-12-800066-3.00006-1
  • [4] Cooper C, Mitchell CN, Wright CJ, Jackson DR, Witvliet BA. Measurement of Ionospheric Total Electron Content Using Single-Frequency Geostationary Satellite Observations. Radio Science. 2019,54(1),10–19. doi:https://doi.org/10.1029/2018RS006575
  • [5] Çetin K, Özcan O, Korlaelçi S. The interaction between stratospheric monthly mean regional winds and sporadic-E. 2017, 26(3),,039401. doi:10.1088/1674-1056/26/3/039401
  • [6] Bilitza D, Altadill D, Truhlik V, Shubin V, Galkin I, Reinisch B, Huang X. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather, 2017, 15(2), 418–429. doi:https://doi.org/10.1002/2016SW001593
  • [7] Bilitza D. The International Reference Ionosphere 1990, National Space Science Data Center, NSSDC/WDC-AR &S Reports 90-22. 1990.
  • [8] Bilitza D, Altadill D, Reinisch B, Galkin I, Shubin V, Truhlik V. The international reference ionosphere: model update 2016. 2016. p. EPSC2016-9671.
  • [9] Bilitza D, Hernandez-Pajares M, Juan J, Sanz J. Comparison between IRI and GPS-IGS derived electron content during 1991–1997. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science. 1999, 24(4), 311–319.
  • [10] Gulyaeva T, Arikan F, Stanislawska I. Inter-hemispheric imaging of the ionosphere with the upgraded IRI-Plas model during the space weather storms. Earth, planets and space. 2011, 63(8), 929–939.
  • [11] Tuna H, Arikan O, Arikan F, Gulyaeva TL, Sezen U. Online user‐friendly slant total electron content computation from IRI‐Plas: IRI‐Plas‐STEC. Space weather. 2014, 12(1), 64–75.
  • [12] Sezen U, Gulyaeva TL, Arikan F. Performance of Solar Proxy Options of IRI-Plas Model for Equinox Seasons. Journal of Geophysical Research: Space Physics. 2018, 123(2), 1441–1456. doi:https://doi.org/10.1002/2017JA024994
  • [13] Han L, Wang J, Liu J. NeQuick Model Algorithm Research and Performance Assessment. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University. 2018, 43, 464–470. doi:10.13203/j.whugis20150111
  • [14] Wang N, Yuan Y, Li Z, Li Y, Huo X, Li M. An examination of the Galileo NeQuick model: comparison with GPS and JASON TEC. GPS Solutions, 2017,21. doi:10.1007/s10291-016-0553-x
  • [15] Nava B, Radicella S, Azpilicueta F. Data ingestion into NeQuick 2. Radio Science - RADIO SCI. 2011;46. doi:10.1029/2010RS004635
  • [16] Atiq M, Ameen M, Sadiq N, Khursheed H, Ali M, Yu X, Ameer A. Estimating foF 2 from GPS TEC over Islamabad and Darwin using NeQuick2 during 2011-2014. Advances in Space Research. 2021, 67, 1559–1569. doi:10.1016/j.asr.2020.12.003
  • [17] Leitinger R, Zhang M-L, Radicella S. An improved bottomside for NeQuick. 2003 Apr 1:2812.
  • [18] Nava B, Coïsson P, Radicella SM. A new version of the NeQuick ionosphere electron density model. Journal of Atmospheric and Solar-Terrestrial Physics. 2008, 70(15), 1856–1862. doi:https://doi.org/10.1016/j.jastp.2008.01.015
  • [19] Atıcı R, Sağır S, Emelyanov LY, Lyashenko M. Investigation of Ionospheric Electron Density Change During Two Partial Solar Eclipses and Its Comparison with Predictions of NeQuick 2 and IRI-2016 Models. Wireless Personal Communications. 2021 Jan 30. https://doi.org/10.1007/s11277-021-08122-x. doi:10.1007/s11277-021-08122-x
  • [20] Jamjareegulgarn P, Ansari K, Ameer A. Empirical orthogonal function modelling of total electron content over Nepal and comparison with global ionospheric models. Acta Astronautica. 2020, 177, 497–507.
  • [21] Karatay S, Arikan F, Arikan O. Investigation of total electron content variability due to seismic and geomagnetic disturbances in the ionosphere. Radio Science. 2010,45(5).doi:10.1029/2009RS004313.
  • [22] Deviren MN, Arikan F, Arikan O. Spatio-temporal interpolation of total electron content using a GPS network. Radio Science, 2013, 48(3), 302–309. doi:https://doi.org/10.1002/rds.20036
  • [23] Sezen U, Arikan F, Arikan O, Ugurlu O, Sadeghimorad A. Online, automatic, near-real time estimation of GPS-TEC: IONOLAB-TEC. Space Weather, 2013, 11(5), 297–305. doi:https://doi.org/10.1002/swe.20054
  • [24] Arikan F, Nayir H, Sezen U, Arikan O. Estimation of single station interfrequency receiver bias using GPS-TEC. Radio Science. 2008;43(4). doi:https://doi.org/10.1029/2007RS003785
  • [25] Bilitza D. IRI the International Standard for the Ionosphere. Advances in Radio Science, 2018, 16, 1–11. doi:10.5194/ars-16-1-2018
  • [26] Sezen U, Gulyaeva TL, Arikan F. Online computation of International Reference Ionosphere Extended to Plasmasphere (IRI-Plas) model for space weather. Geodesy and Geodynamics, 2018, 9(5), 347–357. doi:https://doi.org/10.1016/j.geog.2018.06.004
  • [27] Gulyaeva TL, Arikan F, Sezen U, Poustovalova LV. Eight proxy indices of solar activity for the International Reference Ionosphere and Plasmasphere model. Journal of Atmospheric and Solar-Terrestrial Physics. 2018, 172, 122–128. doi:https://doi.org/10.1016/j.jastp.2018.03.025
  • [28] Chai T., Draxler R. Root mean square error (RMSE) or mean absolute error (MAE)? Geoscientific Model Development, 7, 2014. doi:10.5194/gmdd-7-1525-2014
  • [29] Hall P. On Kullback-Leibler Loss and Density Estimation, The Annals of Statistics, 15(4), 1491–1519, 1987. doi:10.1214/aos/1176350606
  • [30] Seghouane A.K., Amari S.I. The AIC Criterion and Symmetrizing the Kullback–Leibler Divergence, IEEE Transactions on Neural Networks, 18(1), 97–106, 2007. doi:10.1109/TNN.2006.882813
  • [31] Astafyeva E., Zakharenkova I., Förster M. Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview, Journal of Geophysical Research: Space Physics, 120(10), 9023–9037, 2015. doi: 10.1002/2015JA021629
  • [32] Şentürk E. Investigation of global ionospheric response of the severe geomagnetic storm on June 22-23, 2015 by GNSS-based TEC observations, Astrophysics and Space Science, 365(7), 110, 2020. doi:10.1007/s10509-020-03828-z
  • [33] Paul B., Gordiyenko G., Galav P. Study of the low and mid-latitude ionospheric response to the geomagnetic storm of 20th December 2015, Astrophysics and Space Science, 365(10), 174, 2020. doi:10.1007/s10509-020-03884-5
  • [34] Özcan O., Sağır S., Atıcı R. The relationship between TEC and Earth’s magnetic field during quiet and disturbed days over Istanbul, Turkey, Advances in Space Research. 65(9), 2167–2171, 2020.
  • [35] Atıcı R., Aytaş A., Sağır S. The effect of solar and geomagnetic parameters on total electron content over Ankara, Turkey, Advances in Space Research. 65(9), 2158–2166, 2020.
  • [36] Maurya A.K., Venkatesham K., Kumar S., Singh R., Tiwari P., Singh A.K. Effects of St. Patrick’s Day geomagnetic storm of March 2015 and of June 2015 on low‐equatorial D region ionosphere, Journal of Geophysical Research: Space Physics, 123(8), 6836–6850, 2018.
  • [37] Macho E., Correia E., Paulo C., Angulo L., Vieira J. Ionospheric response to the June 2015 geomagnetic storm in the South American region, Advances in Space Research, 65, 2020. doi:10.1016/j.asr.2020.02.025
  • [38] Cherniak I.V., Zakharenkova I. Large-Scale Traveling Ionospheric Disturbances Origin and Propagation: Case Study of the December 2015 Geomagnetic Storm, Space Weather. 16, 2018. doi:10.1029/2018SW001869
  • [39] Mansilla G., Zossi M. Effects on the equatorial and low latitude thermosphere and ionosphere during the 19 – 22 December 2015 Geomagnetic storm period Advances in Space Research, 65, 2019. doi:10.1016/j.asr.2019.09.025
  • [40] Tariku Y.A. Comparison of Performance of the IRI 2016, IRI-Plas 2017, and NeQuick 2 Models During Different Solar Activity (2013–2018) Years Over South American Sector, Radio Science, 55(8), e2019RS007047, 2020. doi: 10.1029/2019RS007047
  • [41] Okoh D., Onwuneme S., Seemala G., Jin S., Rabiu B., Nava B., Uwamahoro J. Assessment of the NeQuick-2 and IRI-Plas 2017 models using global and long-term GNSS measurements, Journal of Atmospheric and Solar-Terrestrial Physics, 170:1–10, 2018. doi: 10.1016/j.jastp.2018.02.006
  • [42] Ezquer R.G., Scidá L.A., Orué Y.M., Nava B., Cabrera M.A., Brunini C. NeQuick 2 and IRI Plas VTEC predictions for low latitude and South American sector. Advances in Space Research, 61(7), 1803–1818, 2018. doi: 10.1016/j.asr.2017.10.003
  • Jakowski N., Heise S., Stankov S. M. Tsybulya K. Remote sensing of the ionosphere by space-based GNSS observations. Advances in Space Research, 38(11), 2337–2343, 2006. doi:10.1016/j.asr.2005.07.015 [2] Radicella S., Nava B. NeQuick model: Origin and evolution. Annals of Geophysics, 422–425, 2009. doi:10.1109/ISAPE.2010.5696491 [3] Zhang Z., Moore J. C. Chapter 6 - Empirical Orthogonal Functions. Mathematical and Physical Fundamentals of Climate Change. Boston: Elsevier, 161–197, 2015. doi:10.1016/B978-0-12-800066-3.00006-1 [4] Cooper C., Mitchell C. N., Wright C. J., Jackson D. R., Witvliet B. A. Measurement of Ionospheric Total Electron Content Using Single-Frequency Geostationary Satellite Observations, Radio Science, 54(1),10–19, 2019. doi: 10.1029/2018RS006575 [5] Çetin K., Özcan O., Korlaelçi S. The interaction between stratospheric monthly mean regional winds and sporadic-E, Chinese Physics B, 26(3), 039401, 2017. doi:10.1088/1674-1056/26/3/039401 [6] Bilitza D., Altadill D., Truhlik V., Shubin V., Galkin I., Reinisch B., Huang X. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions, Space Weather,15(2), 418–429, 2017. doi: 10.1002/2016SW001593 [7] Bilitza D. The International Reference Ionosphere 1990, National Space Science Data Center, NSSDC/WDC-AR &S Reports 90-22. 1990. [8] Bilitza D., Altadill D., Reinisch B., Galkin I., Shubin V., Truhlik V. The international reference ionosphere: model update 2016, Geophysical Research Abstracts EGU General Assembly 2016, EPSC2016-9671, 2016. [9] Bilitza D., Hernandez-Pajares M., Juan J., Sanz J. Comparison between IRI and GPS-IGS derived electron content during 1991–1997, Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 24(4),311–319, 1999. [10] Gulyaeva T., Arikan F., Stanislawska I. Inter-hemispheric imaging of the ionosphere with the upgraded IRI-Plas model during the space weather storms, Earth, planets and space, 63(8), 929–939, 2011. [11] Tuna H., Arikan O., Arikan F., Gulyaeva T. L., Sezen U. Online user‐friendly slant total electron content computation from IRI‐Plas: IRI‐Plas‐STEC, Space weather, 12(1), 64–75, 2014. [12] Sezen U., Gulyaeva T. L., Arikan F. Performance of Solar Proxy Options of IRI-Plas Model for Equinox Seasons, Journal of Geophysical Research: Space Physics, 123(2),1441–1456, 2018. doi: 10.1002/2017JA024994 [13] Han L., Wang J., Liu J. NeQuick Model Algorithm Research and Performance Assessment, Geomatics and Information Science of Wuhan University, 43, 464–470, 2018. doi:10.13203/j.whugis20150111 [14] Wang N., Yuan Y., Li Z., Li Y., Huo X., Li M. An examination of the Galileo NeQuick model: comparison with GPS and JASON TEC, GPS Solutions, 21, 2017. doi:10.1007/s10291-016-0553-x [15] Nava B., Radicella S., Azpilicueta F. Data ingestion into NeQuick 2, Radio Science. 46, 2011. doi:10.1029/2010RS004635 [16] Atiq M., Ameen M., Sadiq N., Khursheed H., Ali M., Yu X., Ameer A. Estimating foF 2 from GPS TEC over Islamabad and Darwin using NeQuick2 during 2011-2014. Advances in Space Research. 67, 1559–1569, 2021. doi:10.1016/j.asr.2020.12.003 [17] Leitinger R., Zhang M.L., Radicella S. An improved bottomside for NeQuick, In EGS-AGU-EUG Joint Assembly, 1 Apr., 2003. [18] Nava B., Coïsson P., Radicella S.M. A new version of the NeQuick ionosphere electron density model, Journal of Atmospheric and Solar-Terrestrial Physics, 70(15), 1856–1862, 2008. doi: 10.1016/j.jastp.2008.01.015 [19] Atıcı R., Sağır S., Emelyanov L.Y., Lyashenko M. Investigation of Ionospheric Electron Density Change During Two Partial Solar Eclipses and Its Comparison with Predictions of NeQuick 2 and IRI-2016 Models. Wireless Personal Communications, 118(4), 2239-2251, 2021. doi:10.1007/s11277-021-08122-x [20] Jamjareegulgarn P., Ansari K., Ameer A. Empirical orthogonal function modelling of total electron content over Nepal and comparison with global ionospheric models. Acta Astronautica. 177, 497–507, 2020. [21] Karatay S., Arikan F., Arikan O. Investigation of total electron content variability due to seismic and geomagnetic disturbances in the ionosphere. Radio Science. 45(5), 2010. doi: 10.1029/2009RS004313 [22] Deviren M.N., Arikan F., Arikan O. Spatio-temporal interpolation of total electron content using a GPS network, Radio Science, 48(3), 302–309, 2013. doi: 10.1002/rds.20036 [23] Sezen U., Arikan F., Arikan O., Ugurlu O. Sadeghimorad A. Online, automatic, near-real time estimation of GPS-TEC: IONOLAB-TEC, Space Weather, 11(5), 297–305, 2013. doi:10.1002/swe.20054 [24] Arikan F., Nayir H., Sezen U., Arikan O. Estimation of single station interfrequency receiver bias using GPS-TEC, Radio Science, 43(4), 2008. doi: 10.1029/2007RS003785 [25] Bilitza D. IRI the International Standard for the Ionosphere, Advances in Radio Science, 16, 1–11, 2018. doi:10.5194/ars-16-1-2018 [26] Sezen U., Gulyaeva T.L., Arikan F. Online computation of International Reference Ionosphere Extended to Plasmasphere (IRI-Plas) model for space weather. Geodesy and Geodynamics. 9(5), 347–357, 2018. doi: 10.1016/j.geog.2018.06.004 [27] Gulyaeva T.L., Arikan F., Sezen U., Poustovalova L.V. Eight proxy indices of solar activity for the International Reference Ionosphere and Plasmasphere model, Journal of Atmospheric and Solar-Terrestrial Physics, 172, 122–128, 2018. doi: 10.1016/j.jastp.2018.03.025 [28] Chai T., Draxler R. Root mean square error (RMSE) or mean absolute error (MAE)? Geoscientific Model Development, 7, 2014. doi:10.5194/gmdd-7-1525-2014 [29] Hall P. On Kullback-Leibler Loss and Density Estimation, The Annals of Statistics, 15(4), 1491–1519, 1987. doi:10.1214/aos/1176350606 [30] Seghouane A.K., Amari S.I. The AIC Criterion and Symmetrizing the Kullback–Leibler Divergence, IEEE Transactions on Neural Networks, 18(1), 97–106, 2007. doi:10.1109/TNN.2006.882813 [31] Astafyeva E., Zakharenkova I., Förster M. Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview, Journal of Geophysical Research: Space Physics, 120(10), 9023–9037, 2015. doi: 10.1002/2015JA021629 [32] Şentürk E. Investigation of global ionospheric response of the severe geomagnetic storm on June 22-23, 2015 by GNSS-based TEC observations, Astrophysics and Space Science, 365(7), 110, 2020. doi:10.1007/s10509-020-03828-z [33] Paul B., Gordiyenko G., Galav P. Study of the low and mid-latitude ionospheric response to the geomagnetic storm of 20th December 2015, Astrophysics and Space Science, 365(10), 174, 2020. doi:10.1007/s10509-020-03884-5 [34] Özcan O., Sağır S., Atıcı R. The relationship between TEC and Earth’s magnetic field during quiet and disturbed days over Istanbul, Turkey, Advances in Space Research. 65(9), 2167–2171, 2020. [35] Atıcı R., Aytaş A., Sağır S. The effect of solar and geomagnetic parameters on total electron content over Ankara, Turkey, Advances in Space Research. 65(9), 2158–2166, 2020. [36] Maurya A.K., Venkatesham K., Kumar S., Singh R., Tiwari P., Singh A.K. Effects of St. Patrick’s Day geomagnetic storm of March 2015 and of June 2015 on low‐equatorial D region ionosphere, Journal of Geophysical Research: Space Physics, 123(8), 6836–6850, 2018. [37] Macho E., Correia E., Paulo C., Angulo L., Vieira J. Ionospheric response to the June 2015 geomagnetic storm in the South American region, Advances in Space Research, 65, 2020. doi:10.1016/j.asr.2020.02.025 [38] Cherniak I.V., Zakharenkova I. Large-Scale Traveling Ionospheric Disturbances Origin and Propagation: Case Study of the December 2015 Geomagnetic Storm, Space Weather. 16, 2018. doi:10.1029/2018SW001869 [39] Mansilla G., Zossi M. Effects on the equatorial and low latitude thermosphere and ionosphere during the 19 – 22 December 2015 Geomagnetic storm period Advances in Space Research, 65, 2019. doi:10.1016/j.asr.2019.09.025 [40] Tariku Y.A. Comparison of Performance of the IRI 2016, IRI-Plas 2017, and NeQuick 2 Models During Different Solar Activity (2013–2018) Years Over South American Sector, Radio Science, 55(8), e2019RS007047, 2020. doi: 10.1029/2019RS007047 [41] Okoh D., Onwuneme S., Seemala G., Jin S., Rabiu B., Nava B., Uwamahoro J. Assessment of the NeQuick-2 and IRI-Plas 2017 models using global and long-term GNSS measurements, Journal of Atmospheric and Solar-Terrestrial Physics, 170:1–10, 2018. doi: 10.1016/j.jastp.2018.02.006 [42] Ezquer R.G., Scidá L.A., Orué Y.M., Nava B., Cabrera M.A., Brunini C. NeQuick 2 and IRI Plas VTEC predictions for low latitude and South American sector. Advances in Space Research, 61(7), 1803–1818, 2018. doi: 10.1016/j.asr.2017.10.003 [43] Deviren M., Arikan F. IONOLAB-MAP: An automatic spatial interpolation algorithm for total electron content, Turkish Journal of Electrical Engineering & Computer Sciences, 26, 1933–1945, 2018. doi:10.3906/elk-1611-231

2015 Yılında Meydana Gelen Üç Şiddetli Jeomanyetik Fırtına Süresince Deneysel İyonosferik Modellerin Karşılaştırılması

Year 2022, Volume: 10 Issue: 2, 977 - 991, 26.12.2022
https://doi.org/10.18586/msufbd.1176184

Abstract

Jeomanyetik alan, iyonosfer için hem kalkan hem de elektron yoğunluk düzenleyicisi görevi görür. Jeomanyetik alanın iyonosfer üzerindeki etkisi, sakin ve fırtınalı günler için ayrı ayrı incelenebilir. Bu çalışmada, 24. güneş devrinin azalan fazının başlangıcı olan 2015 yılı boyunca iyonosferik modellerin performansı üç farklı şiddetli jeomanyetik fırtına dönemi için değerlendirilmiştir. Bu üç fırtına, 2015 yılının 17-18 Mart, 22-23 Haziran ve 20-21 Aralık tarihlerinde meydana gelmiş ve bunlardan ilki St. Patrick Günü jeomanyetik fırtınası olarak ifade edilir. Toplam Elektron İçeriği (TEC) arasındaki ilişki Küresel Konumlandırma Sistemi (GPS) ile ölçülmüş ve NeQuick 2, IRI 2016, IRI Plas (herhangi bir giriş olmadan- “IRI Plas”) ve IRI Plas TEC (TEC girişi ile- “IRI Plas TEC”) ile değerlendirilmiştir. Ankara (39.57 K, 32.53 D), İstanbul (40.58 K, 29.05 D) ve Erzurum (40.39 K, 40.42 D) olmak üzere üç Türkiye IGS istasyonunda küresel modeller incelenmiştir. Karşılaştırma, Ortalama Mutlak Hata (MAE), Ortalama Kare Hata (RMSE) ve Ortalama Mutlak Yüzde Hata (MAPE) metrikleri ve simetrik Kullback-Leibler Mesafesi (KLD) kullanılarak fırtına öncesi, fırtına sırasında ve fırtına sonrası için ayrı ayrı yapılmıştır. Ampirik modeller arasında IRI Plas TEC, tüm fırtına süreçleri için genel olarak diğer modellerden daha iyi bulunmuştur. IRI 2016'nın fırtına dönüş aşamasında fırtınanın diğer aşamalarına göre daha iyi olduğu ifade edilebilir.

References

  • [1] Jakowski N, Heise S, Stankov SM, Tsybulya K. Remote sensing of the ionosphere by space-based GNSS observations. Advances in Space Research. 2006;38(11),2337–2343. doi:https://doi.org/10.1016/j.asr.2005.07.015
  • [2] Radicella S, Nava B. NeQuick model: Origin and evolution. 2010. p. 422–425. doi:10.1109/ISAPE.2010.5696491
  • [3] Zhang Z, Moore JC. Chapter 6 - Empirical Orthogonal Functions. In: Zhang Z, Moore JC, editors. Mathematical and Physical Fundamentals of Climate Change. Boston: Elsevier; 2015. p. 161–197. https://www.sciencedirect.com/science/article/pii/B9780128000663000061. doi:10.1016/B978-0-12-800066-3.00006-1
  • [4] Cooper C, Mitchell CN, Wright CJ, Jackson DR, Witvliet BA. Measurement of Ionospheric Total Electron Content Using Single-Frequency Geostationary Satellite Observations. Radio Science. 2019,54(1),10–19. doi:https://doi.org/10.1029/2018RS006575
  • [5] Çetin K, Özcan O, Korlaelçi S. The interaction between stratospheric monthly mean regional winds and sporadic-E. 2017, 26(3),,039401. doi:10.1088/1674-1056/26/3/039401
  • [6] Bilitza D, Altadill D, Truhlik V, Shubin V, Galkin I, Reinisch B, Huang X. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather, 2017, 15(2), 418–429. doi:https://doi.org/10.1002/2016SW001593
  • [7] Bilitza D. The International Reference Ionosphere 1990, National Space Science Data Center, NSSDC/WDC-AR &S Reports 90-22. 1990.
  • [8] Bilitza D, Altadill D, Reinisch B, Galkin I, Shubin V, Truhlik V. The international reference ionosphere: model update 2016. 2016. p. EPSC2016-9671.
  • [9] Bilitza D, Hernandez-Pajares M, Juan J, Sanz J. Comparison between IRI and GPS-IGS derived electron content during 1991–1997. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science. 1999, 24(4), 311–319.
  • [10] Gulyaeva T, Arikan F, Stanislawska I. Inter-hemispheric imaging of the ionosphere with the upgraded IRI-Plas model during the space weather storms. Earth, planets and space. 2011, 63(8), 929–939.
  • [11] Tuna H, Arikan O, Arikan F, Gulyaeva TL, Sezen U. Online user‐friendly slant total electron content computation from IRI‐Plas: IRI‐Plas‐STEC. Space weather. 2014, 12(1), 64–75.
  • [12] Sezen U, Gulyaeva TL, Arikan F. Performance of Solar Proxy Options of IRI-Plas Model for Equinox Seasons. Journal of Geophysical Research: Space Physics. 2018, 123(2), 1441–1456. doi:https://doi.org/10.1002/2017JA024994
  • [13] Han L, Wang J, Liu J. NeQuick Model Algorithm Research and Performance Assessment. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University. 2018, 43, 464–470. doi:10.13203/j.whugis20150111
  • [14] Wang N, Yuan Y, Li Z, Li Y, Huo X, Li M. An examination of the Galileo NeQuick model: comparison with GPS and JASON TEC. GPS Solutions, 2017,21. doi:10.1007/s10291-016-0553-x
  • [15] Nava B, Radicella S, Azpilicueta F. Data ingestion into NeQuick 2. Radio Science - RADIO SCI. 2011;46. doi:10.1029/2010RS004635
  • [16] Atiq M, Ameen M, Sadiq N, Khursheed H, Ali M, Yu X, Ameer A. Estimating foF 2 from GPS TEC over Islamabad and Darwin using NeQuick2 during 2011-2014. Advances in Space Research. 2021, 67, 1559–1569. doi:10.1016/j.asr.2020.12.003
  • [17] Leitinger R, Zhang M-L, Radicella S. An improved bottomside for NeQuick. 2003 Apr 1:2812.
  • [18] Nava B, Coïsson P, Radicella SM. A new version of the NeQuick ionosphere electron density model. Journal of Atmospheric and Solar-Terrestrial Physics. 2008, 70(15), 1856–1862. doi:https://doi.org/10.1016/j.jastp.2008.01.015
  • [19] Atıcı R, Sağır S, Emelyanov LY, Lyashenko M. Investigation of Ionospheric Electron Density Change During Two Partial Solar Eclipses and Its Comparison with Predictions of NeQuick 2 and IRI-2016 Models. Wireless Personal Communications. 2021 Jan 30. https://doi.org/10.1007/s11277-021-08122-x. doi:10.1007/s11277-021-08122-x
  • [20] Jamjareegulgarn P, Ansari K, Ameer A. Empirical orthogonal function modelling of total electron content over Nepal and comparison with global ionospheric models. Acta Astronautica. 2020, 177, 497–507.
  • [21] Karatay S, Arikan F, Arikan O. Investigation of total electron content variability due to seismic and geomagnetic disturbances in the ionosphere. Radio Science. 2010,45(5).doi:10.1029/2009RS004313.
  • [22] Deviren MN, Arikan F, Arikan O. Spatio-temporal interpolation of total electron content using a GPS network. Radio Science, 2013, 48(3), 302–309. doi:https://doi.org/10.1002/rds.20036
  • [23] Sezen U, Arikan F, Arikan O, Ugurlu O, Sadeghimorad A. Online, automatic, near-real time estimation of GPS-TEC: IONOLAB-TEC. Space Weather, 2013, 11(5), 297–305. doi:https://doi.org/10.1002/swe.20054
  • [24] Arikan F, Nayir H, Sezen U, Arikan O. Estimation of single station interfrequency receiver bias using GPS-TEC. Radio Science. 2008;43(4). doi:https://doi.org/10.1029/2007RS003785
  • [25] Bilitza D. IRI the International Standard for the Ionosphere. Advances in Radio Science, 2018, 16, 1–11. doi:10.5194/ars-16-1-2018
  • [26] Sezen U, Gulyaeva TL, Arikan F. Online computation of International Reference Ionosphere Extended to Plasmasphere (IRI-Plas) model for space weather. Geodesy and Geodynamics, 2018, 9(5), 347–357. doi:https://doi.org/10.1016/j.geog.2018.06.004
  • [27] Gulyaeva TL, Arikan F, Sezen U, Poustovalova LV. Eight proxy indices of solar activity for the International Reference Ionosphere and Plasmasphere model. Journal of Atmospheric and Solar-Terrestrial Physics. 2018, 172, 122–128. doi:https://doi.org/10.1016/j.jastp.2018.03.025
  • [28] Chai T., Draxler R. Root mean square error (RMSE) or mean absolute error (MAE)? Geoscientific Model Development, 7, 2014. doi:10.5194/gmdd-7-1525-2014
  • [29] Hall P. On Kullback-Leibler Loss and Density Estimation, The Annals of Statistics, 15(4), 1491–1519, 1987. doi:10.1214/aos/1176350606
  • [30] Seghouane A.K., Amari S.I. The AIC Criterion and Symmetrizing the Kullback–Leibler Divergence, IEEE Transactions on Neural Networks, 18(1), 97–106, 2007. doi:10.1109/TNN.2006.882813
  • [31] Astafyeva E., Zakharenkova I., Förster M. Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview, Journal of Geophysical Research: Space Physics, 120(10), 9023–9037, 2015. doi: 10.1002/2015JA021629
  • [32] Şentürk E. Investigation of global ionospheric response of the severe geomagnetic storm on June 22-23, 2015 by GNSS-based TEC observations, Astrophysics and Space Science, 365(7), 110, 2020. doi:10.1007/s10509-020-03828-z
  • [33] Paul B., Gordiyenko G., Galav P. Study of the low and mid-latitude ionospheric response to the geomagnetic storm of 20th December 2015, Astrophysics and Space Science, 365(10), 174, 2020. doi:10.1007/s10509-020-03884-5
  • [34] Özcan O., Sağır S., Atıcı R. The relationship between TEC and Earth’s magnetic field during quiet and disturbed days over Istanbul, Turkey, Advances in Space Research. 65(9), 2167–2171, 2020.
  • [35] Atıcı R., Aytaş A., Sağır S. The effect of solar and geomagnetic parameters on total electron content over Ankara, Turkey, Advances in Space Research. 65(9), 2158–2166, 2020.
  • [36] Maurya A.K., Venkatesham K., Kumar S., Singh R., Tiwari P., Singh A.K. Effects of St. Patrick’s Day geomagnetic storm of March 2015 and of June 2015 on low‐equatorial D region ionosphere, Journal of Geophysical Research: Space Physics, 123(8), 6836–6850, 2018.
  • [37] Macho E., Correia E., Paulo C., Angulo L., Vieira J. Ionospheric response to the June 2015 geomagnetic storm in the South American region, Advances in Space Research, 65, 2020. doi:10.1016/j.asr.2020.02.025
  • [38] Cherniak I.V., Zakharenkova I. Large-Scale Traveling Ionospheric Disturbances Origin and Propagation: Case Study of the December 2015 Geomagnetic Storm, Space Weather. 16, 2018. doi:10.1029/2018SW001869
  • [39] Mansilla G., Zossi M. Effects on the equatorial and low latitude thermosphere and ionosphere during the 19 – 22 December 2015 Geomagnetic storm period Advances in Space Research, 65, 2019. doi:10.1016/j.asr.2019.09.025
  • [40] Tariku Y.A. Comparison of Performance of the IRI 2016, IRI-Plas 2017, and NeQuick 2 Models During Different Solar Activity (2013–2018) Years Over South American Sector, Radio Science, 55(8), e2019RS007047, 2020. doi: 10.1029/2019RS007047
  • [41] Okoh D., Onwuneme S., Seemala G., Jin S., Rabiu B., Nava B., Uwamahoro J. Assessment of the NeQuick-2 and IRI-Plas 2017 models using global and long-term GNSS measurements, Journal of Atmospheric and Solar-Terrestrial Physics, 170:1–10, 2018. doi: 10.1016/j.jastp.2018.02.006
  • [42] Ezquer R.G., Scidá L.A., Orué Y.M., Nava B., Cabrera M.A., Brunini C. NeQuick 2 and IRI Plas VTEC predictions for low latitude and South American sector. Advances in Space Research, 61(7), 1803–1818, 2018. doi: 10.1016/j.asr.2017.10.003
  • Jakowski N., Heise S., Stankov S. M. Tsybulya K. Remote sensing of the ionosphere by space-based GNSS observations. Advances in Space Research, 38(11), 2337–2343, 2006. doi:10.1016/j.asr.2005.07.015 [2] Radicella S., Nava B. NeQuick model: Origin and evolution. Annals of Geophysics, 422–425, 2009. doi:10.1109/ISAPE.2010.5696491 [3] Zhang Z., Moore J. C. Chapter 6 - Empirical Orthogonal Functions. Mathematical and Physical Fundamentals of Climate Change. Boston: Elsevier, 161–197, 2015. doi:10.1016/B978-0-12-800066-3.00006-1 [4] Cooper C., Mitchell C. N., Wright C. J., Jackson D. R., Witvliet B. A. Measurement of Ionospheric Total Electron Content Using Single-Frequency Geostationary Satellite Observations, Radio Science, 54(1),10–19, 2019. doi: 10.1029/2018RS006575 [5] Çetin K., Özcan O., Korlaelçi S. The interaction between stratospheric monthly mean regional winds and sporadic-E, Chinese Physics B, 26(3), 039401, 2017. doi:10.1088/1674-1056/26/3/039401 [6] Bilitza D., Altadill D., Truhlik V., Shubin V., Galkin I., Reinisch B., Huang X. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions, Space Weather,15(2), 418–429, 2017. doi: 10.1002/2016SW001593 [7] Bilitza D. The International Reference Ionosphere 1990, National Space Science Data Center, NSSDC/WDC-AR &S Reports 90-22. 1990. [8] Bilitza D., Altadill D., Reinisch B., Galkin I., Shubin V., Truhlik V. The international reference ionosphere: model update 2016, Geophysical Research Abstracts EGU General Assembly 2016, EPSC2016-9671, 2016. [9] Bilitza D., Hernandez-Pajares M., Juan J., Sanz J. Comparison between IRI and GPS-IGS derived electron content during 1991–1997, Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 24(4),311–319, 1999. [10] Gulyaeva T., Arikan F., Stanislawska I. Inter-hemispheric imaging of the ionosphere with the upgraded IRI-Plas model during the space weather storms, Earth, planets and space, 63(8), 929–939, 2011. [11] Tuna H., Arikan O., Arikan F., Gulyaeva T. L., Sezen U. Online user‐friendly slant total electron content computation from IRI‐Plas: IRI‐Plas‐STEC, Space weather, 12(1), 64–75, 2014. [12] Sezen U., Gulyaeva T. L., Arikan F. Performance of Solar Proxy Options of IRI-Plas Model for Equinox Seasons, Journal of Geophysical Research: Space Physics, 123(2),1441–1456, 2018. doi: 10.1002/2017JA024994 [13] Han L., Wang J., Liu J. NeQuick Model Algorithm Research and Performance Assessment, Geomatics and Information Science of Wuhan University, 43, 464–470, 2018. doi:10.13203/j.whugis20150111 [14] Wang N., Yuan Y., Li Z., Li Y., Huo X., Li M. An examination of the Galileo NeQuick model: comparison with GPS and JASON TEC, GPS Solutions, 21, 2017. doi:10.1007/s10291-016-0553-x [15] Nava B., Radicella S., Azpilicueta F. Data ingestion into NeQuick 2, Radio Science. 46, 2011. doi:10.1029/2010RS004635 [16] Atiq M., Ameen M., Sadiq N., Khursheed H., Ali M., Yu X., Ameer A. Estimating foF 2 from GPS TEC over Islamabad and Darwin using NeQuick2 during 2011-2014. Advances in Space Research. 67, 1559–1569, 2021. doi:10.1016/j.asr.2020.12.003 [17] Leitinger R., Zhang M.L., Radicella S. An improved bottomside for NeQuick, In EGS-AGU-EUG Joint Assembly, 1 Apr., 2003. [18] Nava B., Coïsson P., Radicella S.M. A new version of the NeQuick ionosphere electron density model, Journal of Atmospheric and Solar-Terrestrial Physics, 70(15), 1856–1862, 2008. doi: 10.1016/j.jastp.2008.01.015 [19] Atıcı R., Sağır S., Emelyanov L.Y., Lyashenko M. Investigation of Ionospheric Electron Density Change During Two Partial Solar Eclipses and Its Comparison with Predictions of NeQuick 2 and IRI-2016 Models. Wireless Personal Communications, 118(4), 2239-2251, 2021. doi:10.1007/s11277-021-08122-x [20] Jamjareegulgarn P., Ansari K., Ameer A. Empirical orthogonal function modelling of total electron content over Nepal and comparison with global ionospheric models. Acta Astronautica. 177, 497–507, 2020. [21] Karatay S., Arikan F., Arikan O. Investigation of total electron content variability due to seismic and geomagnetic disturbances in the ionosphere. Radio Science. 45(5), 2010. doi: 10.1029/2009RS004313 [22] Deviren M.N., Arikan F., Arikan O. Spatio-temporal interpolation of total electron content using a GPS network, Radio Science, 48(3), 302–309, 2013. doi: 10.1002/rds.20036 [23] Sezen U., Arikan F., Arikan O., Ugurlu O. Sadeghimorad A. Online, automatic, near-real time estimation of GPS-TEC: IONOLAB-TEC, Space Weather, 11(5), 297–305, 2013. doi:10.1002/swe.20054 [24] Arikan F., Nayir H., Sezen U., Arikan O. Estimation of single station interfrequency receiver bias using GPS-TEC, Radio Science, 43(4), 2008. doi: 10.1029/2007RS003785 [25] Bilitza D. IRI the International Standard for the Ionosphere, Advances in Radio Science, 16, 1–11, 2018. doi:10.5194/ars-16-1-2018 [26] Sezen U., Gulyaeva T.L., Arikan F. Online computation of International Reference Ionosphere Extended to Plasmasphere (IRI-Plas) model for space weather. Geodesy and Geodynamics. 9(5), 347–357, 2018. doi: 10.1016/j.geog.2018.06.004 [27] Gulyaeva T.L., Arikan F., Sezen U., Poustovalova L.V. Eight proxy indices of solar activity for the International Reference Ionosphere and Plasmasphere model, Journal of Atmospheric and Solar-Terrestrial Physics, 172, 122–128, 2018. doi: 10.1016/j.jastp.2018.03.025 [28] Chai T., Draxler R. Root mean square error (RMSE) or mean absolute error (MAE)? Geoscientific Model Development, 7, 2014. doi:10.5194/gmdd-7-1525-2014 [29] Hall P. On Kullback-Leibler Loss and Density Estimation, The Annals of Statistics, 15(4), 1491–1519, 1987. doi:10.1214/aos/1176350606 [30] Seghouane A.K., Amari S.I. The AIC Criterion and Symmetrizing the Kullback–Leibler Divergence, IEEE Transactions on Neural Networks, 18(1), 97–106, 2007. doi:10.1109/TNN.2006.882813 [31] Astafyeva E., Zakharenkova I., Förster M. Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview, Journal of Geophysical Research: Space Physics, 120(10), 9023–9037, 2015. doi: 10.1002/2015JA021629 [32] Şentürk E. Investigation of global ionospheric response of the severe geomagnetic storm on June 22-23, 2015 by GNSS-based TEC observations, Astrophysics and Space Science, 365(7), 110, 2020. doi:10.1007/s10509-020-03828-z [33] Paul B., Gordiyenko G., Galav P. Study of the low and mid-latitude ionospheric response to the geomagnetic storm of 20th December 2015, Astrophysics and Space Science, 365(10), 174, 2020. doi:10.1007/s10509-020-03884-5 [34] Özcan O., Sağır S., Atıcı R. The relationship between TEC and Earth’s magnetic field during quiet and disturbed days over Istanbul, Turkey, Advances in Space Research. 65(9), 2167–2171, 2020. [35] Atıcı R., Aytaş A., Sağır S. The effect of solar and geomagnetic parameters on total electron content over Ankara, Turkey, Advances in Space Research. 65(9), 2158–2166, 2020. [36] Maurya A.K., Venkatesham K., Kumar S., Singh R., Tiwari P., Singh A.K. Effects of St. Patrick’s Day geomagnetic storm of March 2015 and of June 2015 on low‐equatorial D region ionosphere, Journal of Geophysical Research: Space Physics, 123(8), 6836–6850, 2018. [37] Macho E., Correia E., Paulo C., Angulo L., Vieira J. Ionospheric response to the June 2015 geomagnetic storm in the South American region, Advances in Space Research, 65, 2020. doi:10.1016/j.asr.2020.02.025 [38] Cherniak I.V., Zakharenkova I. Large-Scale Traveling Ionospheric Disturbances Origin and Propagation: Case Study of the December 2015 Geomagnetic Storm, Space Weather. 16, 2018. doi:10.1029/2018SW001869 [39] Mansilla G., Zossi M. Effects on the equatorial and low latitude thermosphere and ionosphere during the 19 – 22 December 2015 Geomagnetic storm period Advances in Space Research, 65, 2019. doi:10.1016/j.asr.2019.09.025 [40] Tariku Y.A. Comparison of Performance of the IRI 2016, IRI-Plas 2017, and NeQuick 2 Models During Different Solar Activity (2013–2018) Years Over South American Sector, Radio Science, 55(8), e2019RS007047, 2020. doi: 10.1029/2019RS007047 [41] Okoh D., Onwuneme S., Seemala G., Jin S., Rabiu B., Nava B., Uwamahoro J. Assessment of the NeQuick-2 and IRI-Plas 2017 models using global and long-term GNSS measurements, Journal of Atmospheric and Solar-Terrestrial Physics, 170:1–10, 2018. doi: 10.1016/j.jastp.2018.02.006 [42] Ezquer R.G., Scidá L.A., Orué Y.M., Nava B., Cabrera M.A., Brunini C. NeQuick 2 and IRI Plas VTEC predictions for low latitude and South American sector. Advances in Space Research, 61(7), 1803–1818, 2018. doi: 10.1016/j.asr.2017.10.003 [43] Deviren M., Arikan F. IONOLAB-MAP: An automatic spatial interpolation algorithm for total electron content, Turkish Journal of Electrical Engineering & Computer Sciences, 26, 1933–1945, 2018. doi:10.3906/elk-1611-231
There are 43 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Selçuk Sağır 0000-0002-5698-0154

Şerife Erbay 0000-0002-9749-5403

Publication Date December 26, 2022
Published in Issue Year 2022 Volume: 10 Issue: 2

Cite

APA Sağır, S., & Erbay, Ş. (2022). Comparison of the Empirical Ionospheric Models During Three Severe Geomagnetic Storm Occurred in 2015. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 10(2), 977-991. https://doi.org/10.18586/msufbd.1176184
AMA Sağır S, Erbay Ş. Comparison of the Empirical Ionospheric Models During Three Severe Geomagnetic Storm Occurred in 2015. MAUN Fen Bil. Dergi. December 2022;10(2):977-991. doi:10.18586/msufbd.1176184
Chicago Sağır, Selçuk, and Şerife Erbay. “Comparison of the Empirical Ionospheric Models During Three Severe Geomagnetic Storm Occurred in 2015”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 10, no. 2 (December 2022): 977-91. https://doi.org/10.18586/msufbd.1176184.
EndNote Sağır S, Erbay Ş (December 1, 2022) Comparison of the Empirical Ionospheric Models During Three Severe Geomagnetic Storm Occurred in 2015. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 10 2 977–991.
IEEE S. Sağır and Ş. Erbay, “Comparison of the Empirical Ionospheric Models During Three Severe Geomagnetic Storm Occurred in 2015”, MAUN Fen Bil. Dergi., vol. 10, no. 2, pp. 977–991, 2022, doi: 10.18586/msufbd.1176184.
ISNAD Sağır, Selçuk - Erbay, Şerife. “Comparison of the Empirical Ionospheric Models During Three Severe Geomagnetic Storm Occurred in 2015”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi 10/2 (December 2022), 977-991. https://doi.org/10.18586/msufbd.1176184.
JAMA Sağır S, Erbay Ş. Comparison of the Empirical Ionospheric Models During Three Severe Geomagnetic Storm Occurred in 2015. MAUN Fen Bil. Dergi. 2022;10:977–991.
MLA Sağır, Selçuk and Şerife Erbay. “Comparison of the Empirical Ionospheric Models During Three Severe Geomagnetic Storm Occurred in 2015”. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 2, 2022, pp. 977-91, doi:10.18586/msufbd.1176184.
Vancouver Sağır S, Erbay Ş. Comparison of the Empirical Ionospheric Models During Three Severe Geomagnetic Storm Occurred in 2015. MAUN Fen Bil. Dergi. 2022;10(2):977-91.