Research Article
BibTex RIS Cite

INVESTIGATION OF FLUID FLOW AND HEAT TRANSFER IN A CHANNEL WITH AN OPEN CAVITY HEATED FROM BOTTOM SIDE

Year 2016, Volume: 2 Issue: 1, 55 - 59, 09.06.2016
https://doi.org/10.22531/muglajsci.269973

Abstract

In this study, laminar flow of air (Pr=0.71) and combined forced convection through a horizontal square duct having side length H with a cavity height D and length W placed below the duct is investigated. While the bottom surface of the cavity is kept at a constant temperature, all the other cavity and duct walls are adiabatic. Air at constant temperature enters to the duct with constant velocity. The problem is modeled in three dimensions (3-D) and continuity, momentum and energy equations are solved using FLUENT® software where Boussinesq approximation is used for the density difference. In differencing the convection terms, second order upwind scheme and SIMPLE algorithm has been adapted. Width to height ratio of cavity is taken as W/D=0.5 and 1 while duct height to cavity height ratio H/D is kept within 0.5-2 interval. The Richardson number is varied between 0.1 to 10. The numerical simulations and the analysis were carried out for Reynolds number values of 10, 100 and 200. The average Nusselt number is computed over the hot bottom cavity surface area and the effects of the Richardson number, Reynolds number, W/D and H/D ratios on the flow and heat transfer are investigated. It is observed that as the cavity width is increased, rotating cells are observed with increasing the Richardson number while for increased Reynolds numbers forced convection effects became more pronounced.

References

  • Sharif M.A.R, Mohammad T.R., Natural Convection in Cavities with Constant Heat Flux Heating at The Bottom Wall and Isothermal Cooling From Sidewalls, International Journal Of Thermal Sciences, 44, 865-878, 2005.
  • Corcione, M., Effects of The Thermal Boundary Conditions at The Sidewalls upon Natural Convection in Rectangular Enclosures Heated From Below and Cooled From Above, International Journal Of Thermal Sciences, 42, 199-208, 2003.
  • Dalal A., Das M.K., Natural Convection in a Rectangular Cavity Heated From Below and Uniformly Cooled From The Top and Both Sides, Numerical Heat Transfer Part:A,49, 301-322, 2006.
  • Pigeonneau F., Flesselles J.M., Practical Laws for Natural Convection of Viscous Fluids Heated From Above in a Shallow Cavity, International Journal of Heat and Mass Transfer, 55, 436-442, 2012.
  • Basak T., Roy S., Sharma P.K., Pop I., Analysis of Mixed Convection Flows within a Square Cavity with Uniform and Non-uniform Heating of Bottom Wall, International Journal of Thermal Sciences, 48, 891-912, 2009.
  • Leong J.C., Brown N.M., Lai F.C., Mixed Convection From an Open Cavity In a Horizontal Channel, International Communications in Heat and Mass Transfer, 32, 583-592, 2005.
  • Pallares J., Cuesta I., Grau F.X., Giralt F., Natural Convection in a Cubical Cavity Heated from Below at Low Rayleigh Numbers, International Journal Heat Mass Transfer, 39, 3233-3247, 1996.
  • Nakano A., Ozoe H., Churchill S.W., Numerical Computation of Natural Convection for a Low-Prandtl-Number Fluid in a Shallow Rectangular Region Heated From Below, Chemical Engineering Journal, 71, 175-182, 1998.
  • Striba Y., Anaysis of The Flow and Heat Transfer Characteristics for Assisting Incompressible Laminar Flow Past an Open Cavity, International Communications in Heat and Mass Transfer, 35, 901-907, 2008.
  • Andreozzi A., Buonomo B., Manca O., Nardini S., Three Dimensional Transient Natural Convection in Horizontal Channels Heated From Below, ASME ATI2006,Vol2, 773-782, 2006.
  • Buonomo B., Foglia G., Manca O., Nardini S., Mixed Convection in a Horizontal Channel with Heated Bottom Wall and External Heat Transfer on Upper Wall, ASME ATI2006,Vol2, 763-772, 2006.

ALT YÜZEYİNDEN ISITILAN AÇIK OYUK İÇEREN YATAY KANALDA ISI GEÇİŞİ VE AKIŞIN İNCELENMESİ

Year 2016, Volume: 2 Issue: 1, 55 - 59, 09.06.2016
https://doi.org/10.22531/muglajsci.269973

Abstract

Bu çalışmada, yüksekliği ve genişliği H olan kare
kesitli yatay şekilde konumlu bir kanalın tabanına yerleştirilen, yüksekliği D
ve uzunluğu W olan bir oyuktan laminer akış koşullarında hava (Pr=0.71) akışı
ile kombine zorlanmış ve doğal taşınım ile ısı geçişi sayısal olarak incelenmiştir.
Oyuk alt yüzeyi sabit sıcaklıkta tutulurken, oyuk ve kanalın diğer duvarları
yalıtılmıştır. Hava, kanala sabit hız ve sabit sıcaklıkta girmektedir. Problem,
üç boyutlu (3-B) olarak ele alınmış ve süreklilik, momentum ve enerji
denklemleri FLUENT® yazılımı yardımıyla çözülmüş ve yoğunluk farkı
için Boussinesq yaklaşımı kullanılmıştır. Taşınım terimlerinin
ayrıklaştırılmasında, ikinci dereceden ayrıklaştırma ve sayısal çözümde SIMPLE
algoritması kullanılmıştır. Oyuk en/boy oranı, W/D=0.5 ve 1 alınırken, kanal
yüksekliğinin oyuk yüksekliğine oranı H/D=0.5-2 aralığında tutulmuştur.
Richardson sayısı 0.1-10 arasında değiştirilmiştir. Sayısal analizlerde Reynolds
sayısının 10, 100 ve 200 değerleri için incelenmiştir. Nusselt sayısı, ısıtılan
oyuk taban yüzeyi alanı boyunca ortalanmış değeri hesaplanarak Richardson
sayısı, Reynolds sayısı, W/D ve H/D oranlarının değişiminin kanaldaki akışkan
akışının ısı geçişine etkisi incelenmiştir. Oyuk genişliği arttırıldığında ısı
geçişinde artış olduğu, Richardson sayısı arttırıldığında oyuk içinde dönel
hücrelerin oluştuğu, yüksek Reynolds değerlerinde ise zorlanmış taşınım
etkilerinin önem kazandığı gözlenmiştir.

References

  • Sharif M.A.R, Mohammad T.R., Natural Convection in Cavities with Constant Heat Flux Heating at The Bottom Wall and Isothermal Cooling From Sidewalls, International Journal Of Thermal Sciences, 44, 865-878, 2005.
  • Corcione, M., Effects of The Thermal Boundary Conditions at The Sidewalls upon Natural Convection in Rectangular Enclosures Heated From Below and Cooled From Above, International Journal Of Thermal Sciences, 42, 199-208, 2003.
  • Dalal A., Das M.K., Natural Convection in a Rectangular Cavity Heated From Below and Uniformly Cooled From The Top and Both Sides, Numerical Heat Transfer Part:A,49, 301-322, 2006.
  • Pigeonneau F., Flesselles J.M., Practical Laws for Natural Convection of Viscous Fluids Heated From Above in a Shallow Cavity, International Journal of Heat and Mass Transfer, 55, 436-442, 2012.
  • Basak T., Roy S., Sharma P.K., Pop I., Analysis of Mixed Convection Flows within a Square Cavity with Uniform and Non-uniform Heating of Bottom Wall, International Journal of Thermal Sciences, 48, 891-912, 2009.
  • Leong J.C., Brown N.M., Lai F.C., Mixed Convection From an Open Cavity In a Horizontal Channel, International Communications in Heat and Mass Transfer, 32, 583-592, 2005.
  • Pallares J., Cuesta I., Grau F.X., Giralt F., Natural Convection in a Cubical Cavity Heated from Below at Low Rayleigh Numbers, International Journal Heat Mass Transfer, 39, 3233-3247, 1996.
  • Nakano A., Ozoe H., Churchill S.W., Numerical Computation of Natural Convection for a Low-Prandtl-Number Fluid in a Shallow Rectangular Region Heated From Below, Chemical Engineering Journal, 71, 175-182, 1998.
  • Striba Y., Anaysis of The Flow and Heat Transfer Characteristics for Assisting Incompressible Laminar Flow Past an Open Cavity, International Communications in Heat and Mass Transfer, 35, 901-907, 2008.
  • Andreozzi A., Buonomo B., Manca O., Nardini S., Three Dimensional Transient Natural Convection in Horizontal Channels Heated From Below, ASME ATI2006,Vol2, 773-782, 2006.
  • Buonomo B., Foglia G., Manca O., Nardini S., Mixed Convection in a Horizontal Channel with Heated Bottom Wall and External Heat Transfer on Upper Wall, ASME ATI2006,Vol2, 763-772, 2006.
There are 11 citations in total.

Details

Subjects Engineering
Journal Section Journals
Authors

Çisil Timuralp

Zekeriya Altaç

Publication Date June 9, 2016
Published in Issue Year 2016 Volume: 2 Issue: 1

Cite

APA Timuralp, Ç., & Altaç, Z. (2016). INVESTIGATION OF FLUID FLOW AND HEAT TRANSFER IN A CHANNEL WITH AN OPEN CAVITY HEATED FROM BOTTOM SIDE. Mugla Journal of Science and Technology, 2(1), 55-59. https://doi.org/10.22531/muglajsci.269973
AMA Timuralp Ç, Altaç Z. INVESTIGATION OF FLUID FLOW AND HEAT TRANSFER IN A CHANNEL WITH AN OPEN CAVITY HEATED FROM BOTTOM SIDE. Mugla Journal of Science and Technology. June 2016;2(1):55-59. doi:10.22531/muglajsci.269973
Chicago Timuralp, Çisil, and Zekeriya Altaç. “INVESTIGATION OF FLUID FLOW AND HEAT TRANSFER IN A CHANNEL WITH AN OPEN CAVITY HEATED FROM BOTTOM SIDE”. Mugla Journal of Science and Technology 2, no. 1 (June 2016): 55-59. https://doi.org/10.22531/muglajsci.269973.
EndNote Timuralp Ç, Altaç Z (June 1, 2016) INVESTIGATION OF FLUID FLOW AND HEAT TRANSFER IN A CHANNEL WITH AN OPEN CAVITY HEATED FROM BOTTOM SIDE. Mugla Journal of Science and Technology 2 1 55–59.
IEEE Ç. Timuralp and Z. Altaç, “INVESTIGATION OF FLUID FLOW AND HEAT TRANSFER IN A CHANNEL WITH AN OPEN CAVITY HEATED FROM BOTTOM SIDE”, Mugla Journal of Science and Technology, vol. 2, no. 1, pp. 55–59, 2016, doi: 10.22531/muglajsci.269973.
ISNAD Timuralp, Çisil - Altaç, Zekeriya. “INVESTIGATION OF FLUID FLOW AND HEAT TRANSFER IN A CHANNEL WITH AN OPEN CAVITY HEATED FROM BOTTOM SIDE”. Mugla Journal of Science and Technology 2/1 (June 2016), 55-59. https://doi.org/10.22531/muglajsci.269973.
JAMA Timuralp Ç, Altaç Z. INVESTIGATION OF FLUID FLOW AND HEAT TRANSFER IN A CHANNEL WITH AN OPEN CAVITY HEATED FROM BOTTOM SIDE. Mugla Journal of Science and Technology. 2016;2:55–59.
MLA Timuralp, Çisil and Zekeriya Altaç. “INVESTIGATION OF FLUID FLOW AND HEAT TRANSFER IN A CHANNEL WITH AN OPEN CAVITY HEATED FROM BOTTOM SIDE”. Mugla Journal of Science and Technology, vol. 2, no. 1, 2016, pp. 55-59, doi:10.22531/muglajsci.269973.
Vancouver Timuralp Ç, Altaç Z. INVESTIGATION OF FLUID FLOW AND HEAT TRANSFER IN A CHANNEL WITH AN OPEN CAVITY HEATED FROM BOTTOM SIDE. Mugla Journal of Science and Technology. 2016;2(1):55-9.

Cited By

5975f2e33b6ce.png
Mugla Journal of Science and Technology (MJST) is licensed under the Creative Commons Attribution-Noncommercial-Pseudonymity License 4.0 international license