Research Article
BibTex RIS Cite

İÇMESUYU İLETİM VE DAĞITIM SİSTEMLERİNDE FAZLA BASINÇTAN ENERJİ ÜRETİM POTANSİYELİ

Year 2016, Volume: 2 Issue: 1, 70 - 76, 09.06.2016
https://doi.org/10.22531/muglajsci.269976

Abstract

İçme suyu temini sistemlerinin sağlık ve hijyen
koşullarına uygun şekilde ve kesintisiz olarak iletiminin yanı sıra
sürdürülebilir özellikte olması büyük önem kazanmaktadır. Sürdürülebilir
içmesuyu temini sistemi için enerji verimliliğinin geliştirilmesi, şebekedeki
enerji ve su kayıpları ile birlikte karbon dioksit emisyonlarının azaltılması gereklidir.
Cazibeli içme suyu iletim hatları ve dağıtım şebekelerinde temel tasarım
parametrelerinden birisi basınçtır ve basıncın belirli limitler arasında
tutulması zorunludur. Yüksek kotlarda yer alan su kaynaklarından düşük kotlara
suyun iletimi sırasında borulardaki fazla su basıncının azaltılması
gerekmektedir. Bu amaçla kullanılan maslak, hazne veya basınç düşürme vanaları (Pressure
Reducing Valve, PRV) ile fazla basınç düşürülerek fazla basıncın iletim hattı
borularına vereceği zararlar engellenmektedir. Ancak, bu süreçte türbin
kullanılarak fazla basınçtan enerji kazanımı mümkündür. Benzer şekilde içmesuyu
dağıtım şebekelerinde de yüksek basınç seviyelerinin kontrol altına
alınabilmesi için belirli noktalarda PRV kullanılarak, şebeke basıncı, optimum
işletim basıncına indirilmektedir. Bu süreçte de fazla basınçtan enerji
kazanımı az miktarda olsa bile mümkündür. Su temini sistemlerindeki yüksek
basınç hem enerji, hem de su kayıplarına neden olmaktadır. Türkiye’de içmesuyu
dağıtım şebekelerinde izin verilen su basıncı 20-60 mss aralığında olmakla
birlikte şebekelerde genellikle yüksek basınç değerleri gözlenmektedir. Düşük
basınç değerlerinde şebeke suyu abonelere ulaşamadığından, müşteri
memnuniyetsizliği yaşanmaktadır. Diğer yandan yüksek basınç değerlerinde ise
şebekedeki su kayıpları ve arıza sıklığı artmakta, dolaylı olarak enerji
kayıpları da yükselmektedir. Su dağıtım şebekelerinin sürdürülebilir işletimi
açısından, şebekelerin kontrolü kolay olan daha küçük boyutlu bağımsız alt
bölgelere ayrılması (District Metered Area, DMA) önerilmektedir. Alt bölgelerin
girişine yerleştirilen debimetre ve basınç metreler ile alt bölgelere verilen
toplam debi ve basınç değerleri anlık olarak izlenebilir. Ancak şebekenin tüm
borularındaki debi ve basınç değerlerinin alansal ve zamansal değişimlerinin
tahmini amacıyla hidrolik modellerin kullanımı gerekmektedir. Hidrolik model
ile optimum şebeke işletim basıncı ve şebeke içerisinde enerji kazanımı
açısından uygun lokasyonlar tanımlanabilir. Bu çalışmada içme suyu temin
sistemlerindeki fazla basınçtan enerji üretim potansiyeli için mevcut
uygulamalar irdelenmekte ve Antalya içme suyu dağıtım şebekesinde türbin pompa
kullanılarak fazla basınçtan enerji üretimi için pilot bir uygulama
anlatılmaktadır.

References

  • Xu, Q.,Chen, Q., Qi, S., Cai, D. Improving Water and Energy Metabolism Efficiency in Urban Water Supply System Through Pressure Stabilization by Optimal Operation on Water Tanks, Ecological Informatics, 26,111-116,2015
  • Karadirek, İ.E., Kara, S., Yılmaz, G., Muhammetoğlu, A., Muhammetoğlu, G. Implementation of Hydraulic Modelling forWater-Loss Reduction Through Pressure Management, Water ResourManage,26, 2555-2568, 2012.
  • İçme Suyu Temin Ve Dağıtım Sistemlerindeki Su Kayıplarının Kontrolü Yönetmeliği, Orman ve Su İşleri Bakanlığı, 2014, T.C Resmi Gazete, 28994.
  • Carravetta, A.,Fecarotta, O., Del Giudicea, G., Ramos, H. Energy recovery in water systems by PATs: a comparison among the different installation schemes, Procedia Engineering, 70, 275-284, 2014.
  • Gray, N.F.Water Technology: an Introduction for Environmental Scientists and Engineers, 3rd edition, Oxford, Butterworth-Heinemann, 2010.
  • McNabola, A.,Coughlan, P., Williams, A.P. The Technical &Economic Feasibility of Energy Recovery in Water Supply Networks, Latest access on June 25, 2015.
  • DiNardo, A., DiNatale, M.,A. Heuristic Design Support Methodology Based On Graph Theory For District Metering of Water Supply Networks, Engineering Optimization, 43(2), 193-211, 2011.
  • Morrison J.A.E.,Tooms S., Hall G. Sustainable District Metering, WaterLoss Conference 2007, Bucharest-Romania, 2007.
  • Vilanova, M.R.N., Balesteri, J., A., B. Energy and Hydraulic Efficiency in Conventional Water Supply Systems, Renewable and Sustainable Energy Reviews,30,701-714, 2014.
  • Gaius-Obaseki, T. Hydropower Opportunities in the Water Industry, International Journal of Environmental Sciences, 1(3), 392-402, 2010.
  • Carravetta, A.,DelGiudice, G., Fecarotta, O., Ramos, H.M. Pump as Turbine (PAT) Design in Water Distribution Network by System Effectiveness, Water, 5, 1211-1225, 2013.
  • Carravetta, A.,Fecarotta, O., Sinagra, M., Tucciarelli, T. Cost-Benefit Analysis for Hydropower Production in Water Distribution Networks by a Pump as Turbine, Journal of Water Resources Planning and Management, 140(6), 2014.
  • Carravetta, A., Del Giudice, G., Fecarotta, O., Ramos, H.M., EnergyProduction in Water Distribution Networks: A PAT Design Strateg, WaterResour Manage.26:3947–3959, 2012.
  • Fontana, N.,Giugni, M., Portalano, D. Losses Reduction and Energy Production in Water-Distribution Networks, Journal of Water Resources Planning and Management, 138, 237-244, 2012.
  • Židonis, A., Aggidis, G., A. State of The Art in Numerical Modelling of Pelton Turbines, Renewable and Sustainable Energy Reviews, 45, 135-144, 2015.
  • Williamson, S.J., Stark, B.H., Booker, B.H. Performance of a low-head pico-hydro Turgo turbine, Applied Energy, 102, 1124-1126, 2014.
  • Cobb, B.R., Sharp, K.V. Impulse (Turgo and Pelton) Turbine Performance Characteristics and Their Impact on Pico-Hydro Installations, Renewable Energy, 50, 959-964, 2013.
  • Ergür, S., Pancar, Y. Hidrolik makinalar ve uygulamaları, İstanbul, Birsen Yayınevi, 2000.
  • Urquiza, G.,Garcia, J.C., Gonzalez, J.G., Castro, L., Rodriguez, J.A., Basurto-Pensado, M.A., Mendoza, O.F. Failure Analysis of a Hydraulic Kaplan Turbine Shaft, Engineering Failure Analysis, 41, 108-117, 2014.
  • Sinagra, M.,Sammartano, V., Arico, C., Collura, A., Tucciarelli, T. Cross-flowTurbine Design for Variable Operating Conditions, Procedia Engineering, 70, 1539-1548, 2014.
  • Rossman, L. EPANET-2 Users Manual, US Environmental Protection Agency, Cincinnati, Ohio, 2000.
  • Bentley Systems, WaterGEMS V8i, GIS-Integrated Water Distribution Model, 2015.

ENERGY RECOVERY POTENTIAL FROM EXCESS PRESSURE in WATER SUPPLY and DISTRIBUTION SYSTEMS

Year 2016, Volume: 2 Issue: 1, 70 - 76, 09.06.2016
https://doi.org/10.22531/muglajsci.269976

Abstract

Sustainability of water supply systems has started to become an important issue besides continuous and hygienic supply of water. Sustainable water supply systems require improvement of energy efficiency, reduction of energy and water losses in water distribution systems and reduction of carbon dioxide emissions. Pressure is one of the main design parameters for gravity water supply systems and water distribution networks. Therefore, pressure has to be between certain limits. An excess pressure occurs during water transmission from high elevations of water resources to low elevations. By use of break pressure tanks, water storage tanks or pressure reducing valves (PRV) excess pressure is reduced and damages on transmission pipes are prevented. However, energy recovery from excess pressure is possible at this stage by using turbines. Similarly, PRVs are used at certain locations of water distribution networks to control excess water pressure and to reduce it down to optimum operational levels. Energy recovery from excess pressure is also possible at this stage although energy recovery will be low. High pressure at water supply systems causes both energy and water losses. In Turkey, allowable water pressure at water distribution networks is between 20-60 m water column but excess pressure is commonly observed. At low pressure levels, water cannot reach water subscribers and this causes customer dissatisfaction. On the other side, at high pressure levels, water losses and pipe bursts increase which causes indirect increase in energy losses. For sustainable operation of water distribution networks, it is recommended to divide the network into smaller and independent subzones (District Metered Area, DMA). By placing a flow meter and a pressure meter at the entrance of a DMA, flow rate and pressure could be monitored on-line. However, in order to monitor spatial and temporal variations of flow rate and pressure at all pipes in the network, a hydraulic model is necessary. By using a hydraulic model, optimum operational pressure at each DMA of a network could be defined and excess pressure areas could be determined. Afterwards, suitable locations for energy recovery in the network can be estimated. In this study, existing applications for energy recovery from gravity water supply systems and water distribution networks are presented. Additionally, a pilot application of a Pump As Turbine in Antalya water distribution network is described for energy recovery form excess pressure.

References

  • Xu, Q.,Chen, Q., Qi, S., Cai, D. Improving Water and Energy Metabolism Efficiency in Urban Water Supply System Through Pressure Stabilization by Optimal Operation on Water Tanks, Ecological Informatics, 26,111-116,2015
  • Karadirek, İ.E., Kara, S., Yılmaz, G., Muhammetoğlu, A., Muhammetoğlu, G. Implementation of Hydraulic Modelling forWater-Loss Reduction Through Pressure Management, Water ResourManage,26, 2555-2568, 2012.
  • İçme Suyu Temin Ve Dağıtım Sistemlerindeki Su Kayıplarının Kontrolü Yönetmeliği, Orman ve Su İşleri Bakanlığı, 2014, T.C Resmi Gazete, 28994.
  • Carravetta, A.,Fecarotta, O., Del Giudicea, G., Ramos, H. Energy recovery in water systems by PATs: a comparison among the different installation schemes, Procedia Engineering, 70, 275-284, 2014.
  • Gray, N.F.Water Technology: an Introduction for Environmental Scientists and Engineers, 3rd edition, Oxford, Butterworth-Heinemann, 2010.
  • McNabola, A.,Coughlan, P., Williams, A.P. The Technical &Economic Feasibility of Energy Recovery in Water Supply Networks, Latest access on June 25, 2015.
  • DiNardo, A., DiNatale, M.,A. Heuristic Design Support Methodology Based On Graph Theory For District Metering of Water Supply Networks, Engineering Optimization, 43(2), 193-211, 2011.
  • Morrison J.A.E.,Tooms S., Hall G. Sustainable District Metering, WaterLoss Conference 2007, Bucharest-Romania, 2007.
  • Vilanova, M.R.N., Balesteri, J., A., B. Energy and Hydraulic Efficiency in Conventional Water Supply Systems, Renewable and Sustainable Energy Reviews,30,701-714, 2014.
  • Gaius-Obaseki, T. Hydropower Opportunities in the Water Industry, International Journal of Environmental Sciences, 1(3), 392-402, 2010.
  • Carravetta, A.,DelGiudice, G., Fecarotta, O., Ramos, H.M. Pump as Turbine (PAT) Design in Water Distribution Network by System Effectiveness, Water, 5, 1211-1225, 2013.
  • Carravetta, A.,Fecarotta, O., Sinagra, M., Tucciarelli, T. Cost-Benefit Analysis for Hydropower Production in Water Distribution Networks by a Pump as Turbine, Journal of Water Resources Planning and Management, 140(6), 2014.
  • Carravetta, A., Del Giudice, G., Fecarotta, O., Ramos, H.M., EnergyProduction in Water Distribution Networks: A PAT Design Strateg, WaterResour Manage.26:3947–3959, 2012.
  • Fontana, N.,Giugni, M., Portalano, D. Losses Reduction and Energy Production in Water-Distribution Networks, Journal of Water Resources Planning and Management, 138, 237-244, 2012.
  • Židonis, A., Aggidis, G., A. State of The Art in Numerical Modelling of Pelton Turbines, Renewable and Sustainable Energy Reviews, 45, 135-144, 2015.
  • Williamson, S.J., Stark, B.H., Booker, B.H. Performance of a low-head pico-hydro Turgo turbine, Applied Energy, 102, 1124-1126, 2014.
  • Cobb, B.R., Sharp, K.V. Impulse (Turgo and Pelton) Turbine Performance Characteristics and Their Impact on Pico-Hydro Installations, Renewable Energy, 50, 959-964, 2013.
  • Ergür, S., Pancar, Y. Hidrolik makinalar ve uygulamaları, İstanbul, Birsen Yayınevi, 2000.
  • Urquiza, G.,Garcia, J.C., Gonzalez, J.G., Castro, L., Rodriguez, J.A., Basurto-Pensado, M.A., Mendoza, O.F. Failure Analysis of a Hydraulic Kaplan Turbine Shaft, Engineering Failure Analysis, 41, 108-117, 2014.
  • Sinagra, M.,Sammartano, V., Arico, C., Collura, A., Tucciarelli, T. Cross-flowTurbine Design for Variable Operating Conditions, Procedia Engineering, 70, 1539-1548, 2014.
  • Rossman, L. EPANET-2 Users Manual, US Environmental Protection Agency, Cincinnati, Ohio, 2000.
  • Bentley Systems, WaterGEMS V8i, GIS-Integrated Water Distribution Model, 2015.
There are 22 citations in total.

Details

Subjects Engineering
Journal Section Journals
Authors

I.Ethem Karadirek

Selami Kara This is me

Ozge Ozen This is me

Oguzhan Gulaydin This is me

Enes Bestas This is me

Mustafa Boyacilar This is me

Ayse Muhammetoglu

Afsin Gungor

Habib Muhammetoglu This is me

Publication Date June 9, 2016
Published in Issue Year 2016 Volume: 2 Issue: 1

Cite

APA Karadirek, I., Kara, S., Ozen, O., Gulaydin, O., et al. (2016). ENERGY RECOVERY POTENTIAL FROM EXCESS PRESSURE in WATER SUPPLY and DISTRIBUTION SYSTEMS. Mugla Journal of Science and Technology, 2(1), 70-76. https://doi.org/10.22531/muglajsci.269976
AMA Karadirek I, Kara S, Ozen O, Gulaydin O, Bestas E, Boyacilar M, Muhammetoglu A, Gungor A, Muhammetoglu H. ENERGY RECOVERY POTENTIAL FROM EXCESS PRESSURE in WATER SUPPLY and DISTRIBUTION SYSTEMS. Mugla Journal of Science and Technology. June 2016;2(1):70-76. doi:10.22531/muglajsci.269976
Chicago Karadirek, I.Ethem, Selami Kara, Ozge Ozen, Oguzhan Gulaydin, Enes Bestas, Mustafa Boyacilar, Ayse Muhammetoglu, Afsin Gungor, and Habib Muhammetoglu. “ENERGY RECOVERY POTENTIAL FROM EXCESS PRESSURE in WATER SUPPLY and DISTRIBUTION SYSTEMS”. Mugla Journal of Science and Technology 2, no. 1 (June 2016): 70-76. https://doi.org/10.22531/muglajsci.269976.
EndNote Karadirek I, Kara S, Ozen O, Gulaydin O, Bestas E, Boyacilar M, Muhammetoglu A, Gungor A, Muhammetoglu H (June 1, 2016) ENERGY RECOVERY POTENTIAL FROM EXCESS PRESSURE in WATER SUPPLY and DISTRIBUTION SYSTEMS. Mugla Journal of Science and Technology 2 1 70–76.
IEEE I. Karadirek, S. Kara, O. Ozen, O. Gulaydin, E. Bestas, M. Boyacilar, A. Muhammetoglu, A. Gungor, and H. Muhammetoglu, “ENERGY RECOVERY POTENTIAL FROM EXCESS PRESSURE in WATER SUPPLY and DISTRIBUTION SYSTEMS”, Mugla Journal of Science and Technology, vol. 2, no. 1, pp. 70–76, 2016, doi: 10.22531/muglajsci.269976.
ISNAD Karadirek, I.Ethem et al. “ENERGY RECOVERY POTENTIAL FROM EXCESS PRESSURE in WATER SUPPLY and DISTRIBUTION SYSTEMS”. Mugla Journal of Science and Technology 2/1 (June 2016), 70-76. https://doi.org/10.22531/muglajsci.269976.
JAMA Karadirek I, Kara S, Ozen O, Gulaydin O, Bestas E, Boyacilar M, Muhammetoglu A, Gungor A, Muhammetoglu H. ENERGY RECOVERY POTENTIAL FROM EXCESS PRESSURE in WATER SUPPLY and DISTRIBUTION SYSTEMS. Mugla Journal of Science and Technology. 2016;2:70–76.
MLA Karadirek, I.Ethem et al. “ENERGY RECOVERY POTENTIAL FROM EXCESS PRESSURE in WATER SUPPLY and DISTRIBUTION SYSTEMS”. Mugla Journal of Science and Technology, vol. 2, no. 1, 2016, pp. 70-76, doi:10.22531/muglajsci.269976.
Vancouver Karadirek I, Kara S, Ozen O, Gulaydin O, Bestas E, Boyacilar M, Muhammetoglu A, Gungor A, Muhammetoglu H. ENERGY RECOVERY POTENTIAL FROM EXCESS PRESSURE in WATER SUPPLY and DISTRIBUTION SYSTEMS. Mugla Journal of Science and Technology. 2016;2(1):70-6.

5975f2e33b6ce.png
Mugla Journal of Science and Technology (MJST) is licensed under the Creative Commons Attribution-Noncommercial-Pseudonymity License 4.0 international license