Research Article
BibTex RIS Cite

A STATISTICAL TAGUCHI METHOD STUDY FOR GRAPHENE OXIDE-TITANIUM OXIDE (GO-TiO₂) THIN FILM COATING ON GLASS SUBSTRATES USING THE SPIN COATING METHOD

Year 2024, Volume: 10 Issue: 2, 59 - 67, 31.12.2024
https://doi.org/10.22531/muglajsci.1548897

Abstract

In this study, the process of coating graphene oxide-titanium oxide (GO-TiO2) composite thin films onto a glass substrate using the spin coating method was investigated using the Taguchi experimental design approach. The effects of parameters such as spin coating speed (SCR), spin coating time (SCT), dispersion amount (V), and glass substrate plasma treatment time (PLS T) on coating performance were evaluated, and the optimal coating conditions were determined. Signal-to-noise (S/N) ratios were calculated based on the equilibrium contact angles using the L16 orthogonal array experimental design. Stable and high pure water equilibrium contact angle (CA: θe) was identified as the criterion for successful coating. Characterization was performed using X-ray Diffraction (XRD), optical microscopy, Scanning Electron Microscopy (SEM), a four-point probe conductivity measurement device, and an optical contact angle measuring instrument. The optimal coating conditions were determined using the statistical Taguchi method with Pareto Analysis of Variance (Pareto ANOVA), and the effects of the control factors were analyzed. Additionally, regression analyses were conducted to assess the significance of the parameters and their alignment with the most influential factors. Validation experiments confirmed the success of the optimization.

Supporting Institution

TÜBİTAK

Project Number

120M992BSEU

Thanks

ARAŞTIRMACILAR TÜBİTAK'A TEŞEKKÜR EDER.

References

  • Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228-240.
  • Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., ... & Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286.
  • Kim, H., Abdala, A. A., & Macosko, C. W. (2010). Graphene/polymer nanocomposites. Macromolecules, 43(16), 6515-6530.
  • Xu, Y., Sheng, K., Li, C., & Shi, G. (2010). Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS nano, 4(7), 4324-4330.
  • Yang, X., Zhang, X., Ma, Y., Huang, Y., Wang, Y., & Chen, Y. (2009). Superparamagnetic graphene oxide–Fe 3 O 4 nanoparticles hybrid for controlled targeted drug carriers. Journal of materials chemistry, 19(18), 2710-2714.
  • Becerril, H. A., Mao, J., Liu, Z., Stoltenberg, R. M., Bao, Z., & Chen, Y. (2008). Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano, 2(3), 463-470.
  • Hu, W., Peng, C., Luo, W., Lv, M., Li, X., Li, D., ... & Fan, C. (2010). Graphene-based antibacterial paper. ACS Nano, 4(7), 4317-4323.
  • Ensafi, A. A., Sohrabi, M., Jafari-Asl, M., & Rezaei, B. (2015). Selective and sensitive furazolidone biosensor based on DNA-modified TiO2-reduced graphene oxide. Applied Surface Science, 356, 301-307
  • Liu, X., Chen, C., Chen, X. A., Qian, G., Wang, J., Wang, C., ... & Liu, Q. (2018). WO3 QDs enhanced photocatalytic and electrochemical perfomance of GO/TiO2 composite. Catalysis Today, 315, 155-161.
  • Kamat, P. V. (2010). Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. The Journal of Physical Chemistry Letters, 1(2), 520-527.
  • Zhang, L., Liu, Q., & Sun, Y. (2020). Enhanced photocatalytic activity of GO-TiO2 composites: The role of GO in the nanocomposite. Applied Catalysis B: Environmental, 260, 118195. https://doi.org/10.1016/j.apcatb.2019.118195.
  • Deshmukh, S. P., Kale, D. P., Kar, S., Shirsath, S. R., Bhanvase, B. A., Saharan, V. K., & Sonawane, S. H. (2020). Ultrasound assisted preparation of rGO/TiO2 nanocomposite for effective photocatalytic degradation of methylene blue under sunlight. Nano-Structures & Nano-Objects, 21, 100407.
  • Chong, M. N., Jin, B., Chow, C. W. K., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research, 44(10), 2997-3027.
  • Zafar, M., Imran, S. M., Iqbal, I., Azeem, M., Chaudhary, S., Ahmad, S., & Kim, W. Y. (2024). Graphene-based polymer nanocomposites for energy applications: Recent advancements and future prospects. Results in Physics, 107655.
  • Li, S., Jiang, H., Yang, K., Zhang, Z., Li, S., Luo, N., ... & Wei, R. (2018). Three-dimensional hierarchical graphene/TiO2 composite as high-performance electrode for supercapacitor. Journal of Alloys and Compounds, 746, 670-676
  • Wu, X. (2021). Applications of titanium dioxide materials. Titanium Dioxide-Advances and Applications.
  • Eda, G., & Chhowalla, M. (2009). Graphene-based composite thin films for electronics. Nano Letters, 9(2), 814-818.
  • Roy, R. K. (2010). A primer on the Taguchi method. Society of manufacturing engineers.
  • Phadke, M. S. (1989). Quality engineering using robust design. Prentice Hall PTR
  • HAMZAH, A. A. (2022). Statistical Optimization of Zinc Oxide Nanorod Synthesis for Photocatalytic Degradation of Methylene Blue. Sains Malaysiana, 51(6), 1933-1944.
  • Reiner‐Rozman, C., Hasler, R., Andersson, J., Rodrigues, T., Bozdogan, A., Bintinger, J., & Aspermair, P. (2021). The top performer: Towards optimized parameters for reduced graphene oxide uniformity by spin coating. Micro & Nano Letters, 16(8), 436-442.
  • Belhadj, W., Timoumi, A., Alamer, F. A., Alsalmi, O. H., & Alamri, S. N. (2021). Experimental study and theoretical modeling of coating-speed-dependent optical properties of TiO2-graphene-oxide thin films. Results in Physics, 30, 104867.
  • Veeresh Nayak, C., Manjunath Patel, G. C., Ramesh, M. R., Desai, V., & Samanta, S. K. (2020). Analysis and optimization of metal injection moulding process. Materials Forming, Machining and Post Processing, 41-74.
  • Kumaran, V., Sudhagar, P., Konga, A. K., & Ponniah, G. (2020). Photocatalytic degradation of synthetic organic reactive dye wastewater using GO-TiO2 nanocomposite. Polish Journal of Environmental Studies, 29(2), 1683-1690.
  • Liang, J., vd. (2012). “Flexible Free-Standing Graphene/SnO2 Nanocomposites Paper for Li-Ion Battery”, ACS Appl. Mater. Interfaces, 4, 5742-5748.
  • Liang, Y., Wang, H., Sanchez Casalongue, H., Chen, Z., & Dai, H. (2010). TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Research, 3, 701-705.
  • Raja, R., vd. (2017). “Effect of TiO2/reduced graphene oxide composite thin film as a blocking layer on the efficiency of dye-sensitized solar cells” Journal of Solid State Electrochemistry, 21(3), 891-903
  • Joshi, N. C., vd. (2020). Synthesis, adsorptive performances and photo-catalytic activity of graphene oxide/TiO2 (GO/TiO2) nanocomposite-based adsorbent. Nanotechnology for Environmental Engineering, 5(3), 1-13.
  • El Radaf, I. M., & Abdelhameed, R. M. (2018). Surprising performance of graphene oxide/tin dioxide composite thin films. Journal of Alloys and Compounds, 765, 1174-1183.
  • Songkeaw, P., Onlaor, K., Thiwawong, T., & Tunhoo, B. (2019). Reduced graphene oxide thin film prepared by electrostatic spray deposition technique. Materials Chemistry and Physics, 226, 302-308
  • He, R., & He, W. (2016). Ultrasonic assisted synthesis of TiO2–reduced graphene oxide nanocomposites with superior photovoltaic and photocatalytic activities. Ceramics International, 42(5), 5766-5771.
  • Meral, G., Sarıkaya, M., & Dilipak, H. (2011). Delme işlemlerinde kesme parametrelerinin Taguchi yöntemiyle optimizasyonu. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 27(4), 332-338.
  • Serencam, H., & Uçurum, M. (2019). Taguchi Deney Tasarimi Kullanilarak Uçucu Kül ile Ni (II) Gideriminde Bazi Adsorpsiyon Parametrelerinin Etkinliğinin İrdelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(1), 336-344.
  • Bera, M., Gupta, P., & Maji, P. K. (2018). Facile one-pot synthesis of graphene oxide by sonication assisted mechanochemical approach and its surface chemistry. Journal of nanoscience and nanotechnology, 18(2), 902-912.

DÖNDÜREREK KAPLAMA YÖNTEMİYLE CAM SUBSTRAT ÜZERİNE GRAFEN OKSİT-TİTANYUM OKSİT (GO-TiO2) İNCE FİLM KAPLAMA İÇİN İSTATİKSEL TAGUCHI METODU ÇALIŞMASI

Year 2024, Volume: 10 Issue: 2, 59 - 67, 31.12.2024
https://doi.org/10.22531/muglajsci.1548897

Abstract

Bu çalışmada, cam substrat üzerine, döndürerek kaplama yöntemi kullanılarak, grafen oksit-titanyum oksit (GO-TiO2) kompozit ince film kaplama süreci, Taguchi deney tasarımı yaklaşımıyla incelenmiştir. Deneylerde, kaplama performansını etkileyen döndürme hızı (SCR), döndürme süresi (SCT), dispersiyon miktarı (V) ve cam substrat plazmalama süresi (PLS T) gibi parametrelerin etkileri değerlendirilmiş ve en uygun kaplama koşulları belirlenmiştir. L16 ortogonal dizin deney tasarımı kullanılarak, denge temas açılarına dayalı sinyal/gürültü (S/N) oranları hesaplanmıştır. Kaplamanın başarı kriteri olarak kararlı ve yüksek saf su denge temas açısı (CA: θe) belirlenmiştir. Karakterizasyon işlemleri, X Işını Kırınımı (XRD), optik mikroskop, Taramalı Elektron Mikroskobu (SEM), dört problu iletkenlik ölçüm cihazı ve optik temas açısı ölçüm cihazı ile gerçekleştirilmiştir. İstatistiksel Taguchi yöntemiyle optimum kaplama şartları Pareto Varyans analizi (Pareto ANOVA) ile belirlenmiş ve kontrol faktörlerinin etkileri analiz edilmiştir. Ayrıca, regresyon analizleri yapılarak parametrelerin etkilerinin anlamlılığı değerlendirilmiş ve en etken parametrelerle olan uyumu ortaya koyulmuştur. Doğrulama deneyleri ile optimizasyonun başarılı olduğu sonucuna ulaşılmıştır.

Project Number

120M992BSEU

References

  • Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228-240.
  • Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., ... & Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286.
  • Kim, H., Abdala, A. A., & Macosko, C. W. (2010). Graphene/polymer nanocomposites. Macromolecules, 43(16), 6515-6530.
  • Xu, Y., Sheng, K., Li, C., & Shi, G. (2010). Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS nano, 4(7), 4324-4330.
  • Yang, X., Zhang, X., Ma, Y., Huang, Y., Wang, Y., & Chen, Y. (2009). Superparamagnetic graphene oxide–Fe 3 O 4 nanoparticles hybrid for controlled targeted drug carriers. Journal of materials chemistry, 19(18), 2710-2714.
  • Becerril, H. A., Mao, J., Liu, Z., Stoltenberg, R. M., Bao, Z., & Chen, Y. (2008). Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano, 2(3), 463-470.
  • Hu, W., Peng, C., Luo, W., Lv, M., Li, X., Li, D., ... & Fan, C. (2010). Graphene-based antibacterial paper. ACS Nano, 4(7), 4317-4323.
  • Ensafi, A. A., Sohrabi, M., Jafari-Asl, M., & Rezaei, B. (2015). Selective and sensitive furazolidone biosensor based on DNA-modified TiO2-reduced graphene oxide. Applied Surface Science, 356, 301-307
  • Liu, X., Chen, C., Chen, X. A., Qian, G., Wang, J., Wang, C., ... & Liu, Q. (2018). WO3 QDs enhanced photocatalytic and electrochemical perfomance of GO/TiO2 composite. Catalysis Today, 315, 155-161.
  • Kamat, P. V. (2010). Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. The Journal of Physical Chemistry Letters, 1(2), 520-527.
  • Zhang, L., Liu, Q., & Sun, Y. (2020). Enhanced photocatalytic activity of GO-TiO2 composites: The role of GO in the nanocomposite. Applied Catalysis B: Environmental, 260, 118195. https://doi.org/10.1016/j.apcatb.2019.118195.
  • Deshmukh, S. P., Kale, D. P., Kar, S., Shirsath, S. R., Bhanvase, B. A., Saharan, V. K., & Sonawane, S. H. (2020). Ultrasound assisted preparation of rGO/TiO2 nanocomposite for effective photocatalytic degradation of methylene blue under sunlight. Nano-Structures & Nano-Objects, 21, 100407.
  • Chong, M. N., Jin, B., Chow, C. W. K., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research, 44(10), 2997-3027.
  • Zafar, M., Imran, S. M., Iqbal, I., Azeem, M., Chaudhary, S., Ahmad, S., & Kim, W. Y. (2024). Graphene-based polymer nanocomposites for energy applications: Recent advancements and future prospects. Results in Physics, 107655.
  • Li, S., Jiang, H., Yang, K., Zhang, Z., Li, S., Luo, N., ... & Wei, R. (2018). Three-dimensional hierarchical graphene/TiO2 composite as high-performance electrode for supercapacitor. Journal of Alloys and Compounds, 746, 670-676
  • Wu, X. (2021). Applications of titanium dioxide materials. Titanium Dioxide-Advances and Applications.
  • Eda, G., & Chhowalla, M. (2009). Graphene-based composite thin films for electronics. Nano Letters, 9(2), 814-818.
  • Roy, R. K. (2010). A primer on the Taguchi method. Society of manufacturing engineers.
  • Phadke, M. S. (1989). Quality engineering using robust design. Prentice Hall PTR
  • HAMZAH, A. A. (2022). Statistical Optimization of Zinc Oxide Nanorod Synthesis for Photocatalytic Degradation of Methylene Blue. Sains Malaysiana, 51(6), 1933-1944.
  • Reiner‐Rozman, C., Hasler, R., Andersson, J., Rodrigues, T., Bozdogan, A., Bintinger, J., & Aspermair, P. (2021). The top performer: Towards optimized parameters for reduced graphene oxide uniformity by spin coating. Micro & Nano Letters, 16(8), 436-442.
  • Belhadj, W., Timoumi, A., Alamer, F. A., Alsalmi, O. H., & Alamri, S. N. (2021). Experimental study and theoretical modeling of coating-speed-dependent optical properties of TiO2-graphene-oxide thin films. Results in Physics, 30, 104867.
  • Veeresh Nayak, C., Manjunath Patel, G. C., Ramesh, M. R., Desai, V., & Samanta, S. K. (2020). Analysis and optimization of metal injection moulding process. Materials Forming, Machining and Post Processing, 41-74.
  • Kumaran, V., Sudhagar, P., Konga, A. K., & Ponniah, G. (2020). Photocatalytic degradation of synthetic organic reactive dye wastewater using GO-TiO2 nanocomposite. Polish Journal of Environmental Studies, 29(2), 1683-1690.
  • Liang, J., vd. (2012). “Flexible Free-Standing Graphene/SnO2 Nanocomposites Paper for Li-Ion Battery”, ACS Appl. Mater. Interfaces, 4, 5742-5748.
  • Liang, Y., Wang, H., Sanchez Casalongue, H., Chen, Z., & Dai, H. (2010). TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Research, 3, 701-705.
  • Raja, R., vd. (2017). “Effect of TiO2/reduced graphene oxide composite thin film as a blocking layer on the efficiency of dye-sensitized solar cells” Journal of Solid State Electrochemistry, 21(3), 891-903
  • Joshi, N. C., vd. (2020). Synthesis, adsorptive performances and photo-catalytic activity of graphene oxide/TiO2 (GO/TiO2) nanocomposite-based adsorbent. Nanotechnology for Environmental Engineering, 5(3), 1-13.
  • El Radaf, I. M., & Abdelhameed, R. M. (2018). Surprising performance of graphene oxide/tin dioxide composite thin films. Journal of Alloys and Compounds, 765, 1174-1183.
  • Songkeaw, P., Onlaor, K., Thiwawong, T., & Tunhoo, B. (2019). Reduced graphene oxide thin film prepared by electrostatic spray deposition technique. Materials Chemistry and Physics, 226, 302-308
  • He, R., & He, W. (2016). Ultrasonic assisted synthesis of TiO2–reduced graphene oxide nanocomposites with superior photovoltaic and photocatalytic activities. Ceramics International, 42(5), 5766-5771.
  • Meral, G., Sarıkaya, M., & Dilipak, H. (2011). Delme işlemlerinde kesme parametrelerinin Taguchi yöntemiyle optimizasyonu. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 27(4), 332-338.
  • Serencam, H., & Uçurum, M. (2019). Taguchi Deney Tasarimi Kullanilarak Uçucu Kül ile Ni (II) Gideriminde Bazi Adsorpsiyon Parametrelerinin Etkinliğinin İrdelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(1), 336-344.
  • Bera, M., Gupta, P., & Maji, P. K. (2018). Facile one-pot synthesis of graphene oxide by sonication assisted mechanochemical approach and its surface chemistry. Journal of nanoscience and nanotechnology, 18(2), 902-912.
There are 34 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors
Journal Section Articles
Authors

İbrahim Fırat Balkaya 0000-0002-7674-196X

Nevin Atalay Gengeç 0000-0003-0993-4398

Harun Mindivan 0000-0003-3948-253X

Project Number 120M992BSEU
Publication Date December 31, 2024
Submission Date September 12, 2024
Acceptance Date November 20, 2024
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

APA Balkaya, İ. F., Atalay Gengeç, N., & Mindivan, H. (2024). A STATISTICAL TAGUCHI METHOD STUDY FOR GRAPHENE OXIDE-TITANIUM OXIDE (GO-TiO₂) THIN FILM COATING ON GLASS SUBSTRATES USING THE SPIN COATING METHOD. Mugla Journal of Science and Technology, 10(2), 59-67. https://doi.org/10.22531/muglajsci.1548897
AMA Balkaya İF, Atalay Gengeç N, Mindivan H. A STATISTICAL TAGUCHI METHOD STUDY FOR GRAPHENE OXIDE-TITANIUM OXIDE (GO-TiO₂) THIN FILM COATING ON GLASS SUBSTRATES USING THE SPIN COATING METHOD. MJST. December 2024;10(2):59-67. doi:10.22531/muglajsci.1548897
Chicago Balkaya, İbrahim Fırat, Nevin Atalay Gengeç, and Harun Mindivan. “A STATISTICAL TAGUCHI METHOD STUDY FOR GRAPHENE OXIDE-TITANIUM OXIDE (GO-TiO₂) THIN FILM COATING ON GLASS SUBSTRATES USING THE SPIN COATING METHOD”. Mugla Journal of Science and Technology 10, no. 2 (December 2024): 59-67. https://doi.org/10.22531/muglajsci.1548897.
EndNote Balkaya İF, Atalay Gengeç N, Mindivan H (December 1, 2024) A STATISTICAL TAGUCHI METHOD STUDY FOR GRAPHENE OXIDE-TITANIUM OXIDE (GO-TiO₂) THIN FILM COATING ON GLASS SUBSTRATES USING THE SPIN COATING METHOD. Mugla Journal of Science and Technology 10 2 59–67.
IEEE İ. F. Balkaya, N. Atalay Gengeç, and H. Mindivan, “A STATISTICAL TAGUCHI METHOD STUDY FOR GRAPHENE OXIDE-TITANIUM OXIDE (GO-TiO₂) THIN FILM COATING ON GLASS SUBSTRATES USING THE SPIN COATING METHOD”, MJST, vol. 10, no. 2, pp. 59–67, 2024, doi: 10.22531/muglajsci.1548897.
ISNAD Balkaya, İbrahim Fırat et al. “A STATISTICAL TAGUCHI METHOD STUDY FOR GRAPHENE OXIDE-TITANIUM OXIDE (GO-TiO₂) THIN FILM COATING ON GLASS SUBSTRATES USING THE SPIN COATING METHOD”. Mugla Journal of Science and Technology 10/2 (December 2024), 59-67. https://doi.org/10.22531/muglajsci.1548897.
JAMA Balkaya İF, Atalay Gengeç N, Mindivan H. A STATISTICAL TAGUCHI METHOD STUDY FOR GRAPHENE OXIDE-TITANIUM OXIDE (GO-TiO₂) THIN FILM COATING ON GLASS SUBSTRATES USING THE SPIN COATING METHOD. MJST. 2024;10:59–67.
MLA Balkaya, İbrahim Fırat et al. “A STATISTICAL TAGUCHI METHOD STUDY FOR GRAPHENE OXIDE-TITANIUM OXIDE (GO-TiO₂) THIN FILM COATING ON GLASS SUBSTRATES USING THE SPIN COATING METHOD”. Mugla Journal of Science and Technology, vol. 10, no. 2, 2024, pp. 59-67, doi:10.22531/muglajsci.1548897.
Vancouver Balkaya İF, Atalay Gengeç N, Mindivan H. A STATISTICAL TAGUCHI METHOD STUDY FOR GRAPHENE OXIDE-TITANIUM OXIDE (GO-TiO₂) THIN FILM COATING ON GLASS SUBSTRATES USING THE SPIN COATING METHOD. MJST. 2024;10(2):59-67.

5975f2e33b6ce.png
Mugla Journal of Science and Technology (MJST) is licensed under the Creative Commons Attribution-Noncommercial-Pseudonymity License 4.0 international license