Review
BibTex RIS Cite

ELECTRICITY GENERATION METHODS FROM SOLAR ENERGY

Year 2024, Issue: 716, 521 - 557, 03.10.2024

Abstract

In this study, photovoltaic cells that directly convert solar energy into electrical energy and concentrated solar energy technologies that indirectly generate electrical energy from superheated steam by concentrating solar energy were examined in detail, classified among themselves, and compared technically. Examinations on elec-tricity production methods and technologies from solar energy were carried out in three stages. In the first stage, a comprehensive scheme was created by examining the methods of electricity production from solar energy in general. In the second stage, the structures and types of photovoltaic cells were examined. In the third stage, concentrated solar energy systems were examined. Finally, electricity production systems from solar energy are compared and the results are presented.

References

  • Abdolmaleki, L., and Berardi, U. (2024). Hybrid solar energy systems with hydrogen and electrical energy storage for a single house and a midrise apartment in North America. International Journal of Hydrogen Energy, 52, 1381–1394. Retrieved from https://www.sciencedirect.com/science/article/pii/S0360319923059682
  • Ackermann, A. S. E. (1915). The Utilisation of Solar Energy. Journal of the Royal Society of Arts, 63 (3258), 538–565. Retrieved from https://www.jstor.org/stable/41346462
  • Ahmed, M. M., Das, B. K., Das, P., Hossain, M. S., and Kibria, M. G. (2024). Energy management and sizing of a stand-alone hybrid renewable energy system for community electricity, fresh water, and cooking gas demands of a remote island. Energy Conversion and Management, 299, 117865. Retrieved from https://www.sciencedirect.com/science/article/pii/S0196890423012116
  • Alferov, Z. I., Andreev, V. M., Garbuzov, D. Z., Zhilyaev, Y. V, Morozov, E. P., Portnoi, E. L., and Trofim, V. G. (1971). Investigation of the influence of the AlAs-GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature. Sov. Phys. Semicond, 4(9), 1573–1575. Retrieved from http://62.44.99.18/photonics/Lasers/Beginning-of-the-Laser-Era-in-the-USSR.pdf#page=132 Arias, I., Cardemil, J., Zarza, E., Valenzuela, L., and Escobar, R. (2022). Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids. Renewable and Sustainable Energy Reviews, 168, 112844. https://doi.org/10.1016/j.rser.2022.112844
  • Asım Genç. (1998). Performance Tests of Parabolic Through Type Solar Concentrator Tracking Sun on One Axis (MSc). Gazi University, Ankara.
  • Avila-Marin, A. L., Fernandez-Reche, J., and Tellez, F. M. (2013). Evaluation of the potential of central receiver solar power plants: configuration, optimization and trends. Applied Energy, 112, 274–288. https://doi.org/10.1016/j.apenergy.2013.05.049
  • Ayşe Özge Küpeli. (2005). Solar cells and their efficiencies (MSc). Eskişehir Osmangazi University, Eskişehir.
  • Baharoon, D. A., Rahman, H. A., Omar, W. Z. W., and Fadhl, S. O. (2015). Historical development of concentrating solar power technologies to generate clean electricity efficiently – A review. Renewable and Sustainable Energy Reviews, 41, 996–1027. https://doi.org/10.1016/j.rser.2014.09.008
  • Bakos, G. C. (2006). Design and construction of a two-axis Sun tracking system for parabolic trough collector (PTC) efficiency improvement. Renewable Energy, 31(15), 2411–2421. https://doi.org/10.1016/j.renene.2005.11.008
  • Barlev, D., Vidu, R., and Stroeve, P. (2011, October 1). Innovation in concentrated solar power. Solar Energy Materials and Solar Cells, Vol. 95, pp. 2703–2725. Elsevier B.V. https://doi.org/10.1016/j.solmat.2011.05.020
  • Baum, V. A., Aparasi, R. R., and Garf, B. A. (1957). High-power solar installations. Solar Energy, 1(1), 6–12. https://doi.org/10.1016/0038-092X(57)90049-X
  • Bean, John R, and Diver, R. B. (1995). Technical status of the dish/stirling joint venture program. Retrieved from https://www.osti.gov/biblio/79749
  • Bean, J R, and Diver, R. B. (1992). The CPG 5-kWe dish-Stirling development program. Retrieved from https://www.sae.org/publications/technical-papers/content/929181/
  • Bean, J R, and Diver, R. B. (1993). Performance of the CPG 7. 5-kW [sub e] Dish-Stirling system. Retrieved from https://www.osti.gov/biblio/6158070
  • Bi, P., Ren, J., Zhang, S., Wang, J., Chen, Z., Gao, M., … others. (2022). Low-cost and high-performance poly (thienylene vinylene) derivative donor for efficient versatile organic photovoltaic cells. Nano Energy, 100, 107463. https://doi.org/10.1016/j.nanoen.2022.107463
  • Blieske, U., Müller-Ost, J., Meisenzahl, K., Grommes, E.-M., Gecke, R., Schneble, N., … Volk, M. (2019). Current and future trends in photovoltaic technology. 2019 International Energy and Sustainability Conference (IESC), 1–5. https://doi.org/10.1109/IESC47067.2019.8976871
  • Boutchich, M., Alvarez, J., Diouf, D., i Cabarrocas, P. R., Liao, M., Masataka, I., … Kleider, J.-P. (2012). Amorphous silicon diamond based heterojunctions with high rectification ratio. Journal of Non-Crystalline Solids, 358(17), 2110–2113. https://doi.org/10.1016/j.jnoncrysol.2011.12.067
  • Chander, S., and Tripathi, S. K. (2023). Advancement in CdMnTe-based photovoltaic cells: Grain growth, deep states and device efficiency assessment with chlorine treatment. Solar Energy, 250, 91–96. https://doi.org/10.1016/j.solener.2022.12.033
  • Chen, Y. T., Kribus, A., Lim, B. H., Lim, C. S., Chong, K. K., Karni, J., … Bligh, T. P. (2004). Comparison of two sun tracking methods in the application of a heliostat field. J. Sol. Energy Eng., 126(1), 638–644. https://doi.org/10.1115/1.1634583
  • Clean Energy Institute. (2014). Copper indium selenide(CIS) solar cell. Retrieved July 8, 2021, from https://www.cei.washington.edu/wp-content/uploads/2014/04/PVcelldisplaycards.pdf
  • Collares-Pereira, M., Gordon, J. M., Rabl, A., and Winston, R. (1991). High concentration two-stage optics for parabolic trough solar collectors with tubular absorber and large rim angle. Solar Energy, 47(6), 457–466. https://doi.org/10.1016/0038-092X(91)90114-C
  • Collares-Pereira, M., Ogallagher, J., Rabl, A., Winston, R., Cole, R., Gorski, A., … Schertz, W. (1979). Applications of CPC’s in solar energy-An overview. Sun II, 1, 542–546. Retrieved from https://ui.adsabs.harvard.edu/abs/1979sun2.conf..542C/abstract
  • Cucchiella, F., D’Adamo, I., Gastaldi, M., and Koh, S. C. L. (2010). A photovoltaic system in a residential building: Environmental and economic optimization analysis. 2010 8th International Conference on Supply Chain Management and Information, 1–9. Retrieved from https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5681782
  • Doraiswamy, D. (2002). The origins of rheology: a short historical excursion. Rheology Bulletin, 71(1), 1–9. Retrieved from http://www0.rheology.org/sor/publications/rheology_b/Jan02/Origin_of_Rheology.pdf
  • D. R. Mills. (2001). Solar Thermal Electricity. In J. Gordon (Ed.), Solar Energy: The State of the Art : ISES Position Papers. James & James.
  • Eddine Boukelia, T., and Mecibah, M.-S. (2013). Parabolic trough solar thermal power plant: Potential, and projects development in Algeria. Renewable and Sustainable Energy Reviews, 21, 288–297. https://doi.org/10.1016/j.rser.2012.11.074
  • Engin Ergün. (2011). Usage of linear Fresnel solar power systems at textile companies to supply energy (MsC). Süleyman Demirel University, Isparta.
  • Eric Mack. (2016, May 17). New world record set for converting sunlight to electricity. Retrieved December 5, 2023, from Newatlas website: https://newatlas.com/solar-cell-electricity-efficiency-world-record-unsw/43384/
  • Ermer, J. H., Jones, R. K., Hebert, P., Pien, P., King, R. R., Bhusari, D., … others. (2012). Status of C3MJ+ and C4MJ production concentrator solar cells at spectrolab. IEEE Journal of Photovoltaics, 2(2), 209–213. https://doi.org/10.1109/JPHOTOV.2011.2180893
  • Falope, T., Lao, L., Hanak, D., and Huo, D. (2024). Hybrid energy system integration and management for solar energy: A review. Energy Conversion and Management: X, 100527. Retrieved from https://www.sciencedirect.com/science/article/pii/S2590174524000059
  • Fernández-Garcia, A., Zarza, E., Valenzuela, L., and Pérez, M. (2010). Parabolic-trough solar collectors and their applications. Renewable and Sustainable Energy Reviews, 14(7), 1695–1721. https://doi.org/10.1016/j.rser.2010.03.012
  • Fortunato, E., Gaspar, D., Duarte, P., Pereira, L., Águas, H., Vicente, A., … Martins, R. (2016). Optoelectronic devices from bacterial nanocellulose. In Bacterial Nanocellulose (pp. 179–197). Elsevier. https://doi.org/10.1016/B978-0-444-63458-0.00011-1
  • Fraas, L. M., and O’Neill, M. J. (2023). History of solar cell development. In Low-cost solar electric power (pp. 1–12). Springer.
  • Gallup, D., Mancini, T., Christensen, J., and Beninga, K. (1994). The utility-scale joint-venture program. Intersociety Energy Conversion Engineering Conference, 3941. https://doi.org/10.2514/6.1994-3941
  • Garcia-Valladares, O., and Velázquez, N. (2009). Numerical simulation of parabolic trough solar collector: Improvement using counter flow concentric circular heat exchangers. International Journal of Heat and Mass Transfer, 52(3–4), 597–609. https://doi.org/10.1016/j.ijheatmasstransfer.2008.08.004
  • Gaul, H., and Rabl, A. (1980). Incidence-angle modifier and average optical efficiency of parabolic trough collectors. https://doi.org/10.1115/1.3266115
  • Gee, R., and Institute, S. E. R. (1980). Line-focus Sun Trackers. Solar Energy Research Institute. Retrieved from https://books.google.com.tr/books?id=Hy-twwEACAAJ
  • Geisz, J. F., Steiner, M. A., Jain, N., Schulte, K. L., France, R. M., McMahon, W. E., … Friedman, D. J. (2018). Building a Six-Junction Inverted Metamorphic Concentrator Solar Cell. IEEE Journal of Photovoltaics, 8(2), 626–632. https://doi.org/10.1109/JPHOTOV.2017.2778567
  • Goetzberger, A., Luther, J., and Willeke, G. (2002). Solar cells: past, present, future. Solar Energy Materials and Solar Cells, 74(1–4), 1–11. https://doi.org/10.1016/S0927-0248(02)00042-9
  • Gong, J., and Sumathy, K. (2016). Active solar water heating systems. In Advances in Solar Heating and Cooling (pp. 203–224). Elsevier. https://doi.org/10.1016/B978-0-08-100301-5.00009-6
  • Green, M. A., Hishikawa, Y., Dunlop, E. D., Levi, D. H., Hohl-Ebinger, J., and Ho-Baillie, A. W. Y. (2018). Solar cell efficiency tables (version 52). Progress in Photovoltaics: Research and Applications, 26(7), 427–436. https://doi.org/10.1002/pip.3040
  • Gülay İşler. (2018). Energy production analysis and applications of parabolic through collector and solar power tower (MSc). Bilecik Şeyh Edebali University, Bilecik.
  • Güven, A. F., and Mete, M. K. (2021). Balkesir’in Erdek ilçesi için şebeke bağlantl hibrit enerji sistemi fizibilite çalışması ve ekonomik analizi. Mühendis ve Makina, 63(706), 138–158. Retrieved from https://dergipark.org.tr/tr/download/article-file/1935109
  • Güven, A. F., and Samy, M. M. (2022). Performance analysis of autonomous green energy system based on multi and hybrid metaheuristic optimization approaches. Energy Conversion and Management, 269, 116058. Retrieved from https://www.sciencedirect.com/science/article/pii/S0196890422008469
  • Güven, A. F., Yörükeren, N., and Mengi, O. Ö. (2024). Multi-objective optimization and sustainable design: a performance comparison of metaheuristic algorithms used for on-grid and off-grid hybrid energy systems. Neural Computing and Applications, 36(13), 7559–7594. Retrieved from https://link.springer.com/article/10.1007/s00521-024-09585-2
  • Güven, A. F., Yörükeren, N., and Samy, M. M. (2022). Design optimization of a stand-alone green energy system of university campus based on Jaya-Harmony Search and Ant Colony Optimization algorithms approaches. Energy, 253, 124089. Retrieved from https://www.sciencedirect.com/science/article/pii/S0360544222009926
  • Güven, A. F., and Yücel, E. (2023). Application of HOMER in assessing and controlling renewable energy-based hybrid EV charging stations across major Turkish cities. International Journal of Energy Studies, 8(4), 747–780. Retrieved from https://dergipark.org.tr/en/download/article-file/3250495
  • Hession, P. J., and Bonwick, W. J. (1984). Experience with a sun tracker system. Solar Energy, 32(1), 3–11. https://doi.org/10.1016/0038-092X(84)90042-2
  • IEA. (2023). Renewables 2023 Analysis and forecast to 2028. Retrieved from https://iea.blob.core.windows.net/assets/96d66a8b-d502-476b-ba94-54ffda84cf72/Renewables_2023.pdf International Energy Agency. (2011). Solar Energy Perspectives. Retrieved from https://iea.blob.core.windows.net/assets/2b3c53f4-1c8f-478c-a4fa-a98597cde27b/SolarEnergyPerspectives.pdf
  • Ishibashi, A., Itabashi, M., Mori, Y., Kaneko, K., Kawado, S., and Watanabe, N. (1986). Raman scattering from (AlAs) m (GaAs) n ultrathin-layer superlattices. Physical Review B, 33(4), 2887. https://doi.org/10.1103/PhysRevB.33.2887
  • Jagdeo, K., Sharon, M., and White, S. (2021). Carbon Nanofiber and Photovoltaic Solar Cell. Carbon Nanofibers: Fundamentals and Applications, 313. https://doi.org/10.1002/9781119769149.ch12
  • Jeter, S. M. (1986). Calculation of the concentrated flux density distribution in parabolic trough collectors by a semifinite formulation. Solar Energy, 37(5), 335–345. https://doi.org/10.1016/0038-092X(86)90130-1
  • John Fitzgerald Weaver. (2018, December 17). Efficiency record isn’t the biggest change for Alta Devices’ GaAS solar technology. PV Magazine. https://doi.org/10.1109/ACCESS.2020.3039457
  • Kalogirou, S., Lloyd, S., and Ward, J. (1997). Modelling, optimisation and performance evaluation of a parabolic trough solar collector steam generation system. Solar Energy, 60(1), 49–59. https://doi.org/10.1016/S0038-092X(96)00131-4
  • Kapluhan, E. (2015). A Research In The Fıeld Of Energy Geography: Usage Of Solar Energy In The World And Turkey. Coğrafya Dergisi, (29), 70–98. Retrieved from https://dergipark.org.tr/tr/download/article-file/231256
  • Kazmerski, L. (2012). Best research cell efficiencies chart. In National Renewable Energy Laboratory (NREL). Retrieved from https://www.nrel.gov/pv/cell-efficiency.html
  • Keskinel, S. (2015). Applied analysis of photovoltaic power systems in buildings within the scope of energy efficiency (MSc). İstanbul Technical University, İstanbul.
  • Khan, M. I., Asfand, F., and Al-Ghamdi, S. G. (2022). Progress in research and technological advancements of thermal energy storage systems for concentrated solar power. Journal of Energy Storage, 55, 105860. https://doi.org/10.1016/j.est.2022.105860
  • Kılıç Abdurrahman, and Öztürk Aksel. (1983). Güneş Enerjisi. Kipaş Dağıtımcılık. King, R Richard, Boca, A., Hong, W., Liu, X. Q., Bhusari, D., Larrabee, D., … others. (2009). Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells. 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 21, 55. Retrieved from https://www.researchgate.net/profile/Chris-Fetzer/publication/267409590_Band-Gap-Engineered_Architectures_for_High-Efficiency_Multijunction_Concentrator_Solar_Cells/links/54590d030cf26d5090acff56/Band-Gap-Engineered-Architectures-for-High-Efficiency-Multijunction-Concentrator-Solar-Cells.pdf
  • King, R R, Law, a_DC, Edmondson, K. M., Fetzer, C. M., Kinsey, G. S., Yoon, H., … Karam, N. H. (2007). 40% efficient metamorphic GaInP/ GaInAs/ Ge multijunction solar cells. Applied Physics Letters, 90(18). https://doi.org/10.1063/1.2734507
  • Kribus, A., Vishnevetsky, I., Yogev, A., and Rubinov, T. (2004). Closed loop control of heliostats. Energy, 29(5–6), 905–913. https://doi.org/10.1016/S0360-5442(03)00195-6
  • Levent Çolak. (2003). Mathematical modelling design and technical optimization of sun tracking parabolic trough solar collectors (MSc). Gazi University, Ankara.
  • Liu, Z., Jin, Z., Li, G., Zhao, X., and Badiei, A. (2022). Study on the performance of a novel photovoltaic/thermal system combining photocatalytic and organic photovoltaic cells. Energy Conversion and Management, 251, 114967. https://doi.org/10.1016/j.enconman.2021.114967
  • Malinowski, M., Leon, J. I., and Abu-Rub, H. (2017). Solar photovoltaic and thermal energy systems: Current technology and future trends. Proceedings of the IEEE, 105(11), 2132–2146. https://doi.org/10.1109/JPROC.2017.2690343
  • Mancini, T., Heller, P., Butler, B., Osborn, B., Schiel, W., Goldberg, V., … Moreno, J. (2003). Dish-stirling systems: An overview of development and status. Journal of Solar Energy Engineering, Transactions of the ASME, 125(2), 135–151. https://doi.org/10.1115/1.1562634
  • Mancini, T. R. (1997). Solar-electric dish Stirling system development. Retrieved from https://www.osti.gov/servlets/purl/622476
  • Ma, T., Yang, H., and Lu, L. (2014). Solar photovoltaic system modeling and performance prediction. Renewable and Sustainable Energy Reviews, 36, 304–315. https://doi.org/10.1016/j.rser.2014.04.057
  • Merchán, R. P., Santos, M. J., Medina, A., and Hernández, A. C. (2022). High temperature central tower plants for concentrated solar power: 2021 overview. Renewable and Sustainable Energy Reviews, 155, 111828. https://doi.org/10.1016/j.rser.2021.111828
  • Messenger, R. A., and Abtahi, A. (2018). Photovoltaic systems engineering. CRC press.
  • Mills, D. (2004). Advances in solar thermal electricity technology. Solar Energy, 76(1–3), 19–31. https://doi.org/10.1016/S0038-092X(03)00102-6
  • Mills, D. R., and Morrison, G. L. (2000). Compact linear Fresnel reflector solar thermal powerplants. Solar Energy, 68(3), 263–283. https://doi.org/10.1016/S0038-092X(99)00068-7
  • Mitigation, C. C. (2011). IPCC special report on renewable energy sources and climate change mitigation. In Renewable Energy (Vol. 20). Retrieved from https://www.uncclearn.org/wp-content/uploads/library/ipcc15.pdf
  • Mohanad Abdulazeez Abdulraheem Alfellag. (2014). Modeling And Experimental Investigation Of Parabolic Trough Solar Collector (MSc). Embry-Riddle Aeronautical University.
  • Morin, G., Karl, M., Mertins, M., and Selig, M. (2015). Molten salt as a heat transfer fluid in a linear Fresnel collector–commercial application backed by demonstration. Energy Procedia, 69, 689–698. https://doi.org/10.1016/j.egypro.2015.03.079
  • Nelson, D. T., Evans, D. L., and Bansal, R. K. (1975). Linear Fresnel lens concentrators. Solar Energy, 17(5), 285–289. https://doi.org/10.1016/0038-092X(75)90045-6
  • NREL. (2003). Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts. Retrieved from https://www.nrel.gov/docs/fy04osti/34440.pdf
  • NREL. (2008). NREL Solar Cell Sets World Efficiency Record at 40.8 Percent. Retrieved from https://phys.org/news/2008-08-nrel-solar-cell-world-efficiency.html
  • NREL. (2012a). Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power. Retrieved from https://www.nrel.gov/docs/fy13osti/56416.pdf
  • NREL. (2012b). Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics. Retrieved from https://www.nrel.gov/docs/fy13osti/56487.pdf
  • NREL. (2020, April 13). News Release: NREL Six-Junction Solar Cell Sets Two World Records for Efficiency. Retrieved November 25, 2023, from National Renewable Energy Laboratory website: https://www.nrel.gov/news/press/2020/nrel-six-junction-solar-cell-sets-two-world-records-for-efficiency.html
  • NREL. (2023a). Best Research-Cell Efficiency Chart. Retrieved from https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf
  • NREL. (2023b). Champion Photovoltaic Module Efficiency Chart. Retrieved from https://www.nrel.gov/pv/module-efficiency.html
  • Olgun Konur. (2016). Energy efficiency improvement techniques on solar powered boats (MSc). Dokuz Eylül University, İzmir.
  • Ong, S., Campbell, C., Denholm, P., Margolis, R., and Heath, G. (2013). Land-use requirements for solar power plants in the United States. Retrieved from https://www.nrel.gov/docs/fy13osti/56290.pdf
  • OPEC. (2022). 2022 OPEC’s World Oil Outlook 2045. Retrieved from https://www.opec.org/opec_web/static_files_project/media/downloads/WOO_2022.pdf
  • Orton, J. W. (2008). The story of semiconductors. OUP Oxford.
  • Özgün, U. Z., ÖZDEMİR, T., and ÖZMEN, Ö. T. (2022). Associating Photovoltaic Energy Production with Meteorological Conditions: The Example of İzmir Bakırçay University. The Journal of Graduate School of Natural and Applied Sciences of Mehmet Akif Ersoy University, 13(1), 49–62. https://doi.org/10.29048/makufebed.1053282
  • Padmanabhan, J. B., and Anbazhagan, G. (2024). A comprehensive review of hybrid renewable energy charging system to optimally drive permanent magnet synchronous motors in electric vehicle. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 3499–3521. Retrieved from https://www.tandfonline.com/doi/full/10.1080/15567036.2024.2319347
  • Patricia Scalco, Jacqueline Biancon Copetti, and Mario Henrique Macagnan. (2021). Linear Fresnel Solar Collector Concentrator – A Review. 26th ABCM Int. Cong. of Mechanical Engineering. Florianopolis. Retrieved from https://www.researchgate.net/profile/Patricia-Scalco-2/publication/357067050_Linear_Fresnel_Solar_Collector_Concentrator_-_A_Review/links/61d2ed42da5d105e5517a269/Linear-Fresnel-Solar-Collector-Concentrator-A-Review.pdf
  • Petrova-Koch, V., Hezel, R., and Goetzberger, A. (2008). High-efficient low-cost photovoltaics. Springer. https://doi.org/10.1007/978-3-030-22864-4
  • Prevenslik, T. V. (2003). Cavitation induced Becquerel effect. Ultrasonics, 41(4), 323–327. https://doi.org/10.1016/S0041-624X(03)00083-0
  • Richard Martinarchive page. (2016, March 3). First Solar’s Cells Break Efficiency Record. Retrieved December 5, 2023, from technologyreview website: https://www.technologyreview.com/2016/03/03/161753/first-solars-cells-break-efficiency-record/
  • Riffelmann, K.-J., Neumann, A., and Ulmer, S. (2006). Performance enhancement of parabolic trough collectors by solar flux measurement in the focal region. Solar Energy, 80(10), 1303–1313. https://doi.org/10.1016/j.solener.2005.09.001
  • Russell S Ohl. (1948). Patent No. US2443542A. USA. Retrieved from https://patentimages.storage.googleapis.com/21/a3/d9/a1e314a0faba89/US2443542.pdf
  • Saeed, M. A., Shahzad, A., Rasool, K., Mateen, F., Oh, J.-M., and Shim, J. W. (2022). 2D MXene: a potential candidate for photovoltaic cells? A critical review. Advanced Science, 9(10), 2104743. https://doi.org/10.1002/advs.202104743
  • Salhi, B. (2022). The photovoltaic cell based on CIGS: principles and technologies. Materials, 15(5), 1908. https://doi.org/10.3390/ma15051908
  • Sarver, T., Al-Qaraghuli, A., and Kazmerski, L. L. (2013). A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renewable and Sustainable Energy Reviews, 22, 698–733. https://doi.org/10.1016/j.rser.2012.12.065
  • Şen H. (2009). Temiz Dünya Rehberi: Güneş Enerjisi. Doğa Yayınları.
  • Shakibi, H., Afzal, S., Shokri, A., and Sobhani, B. (2022). Utilization of a phase change material with metal foam for the performance improvement of the photovoltaic cells. Journal of Energy Storage, 51, 104466. https://doi.org/10.1016/j.est.2022.104466
  • Sharaf, M., Huzayyin, A. S., and Yousef, M. S. (2022). Performance enhancement of photovoltaic cells using phase change material (PCM) in winter. Alexandria Engineering Journal, 61(6), 4229–4239. https://doi.org/10.1016/j.aej.2021.09.044
  • Sharma, A., Shukla, A. K., Singh, O., and Sharma, M. (2022). Recent advances in gas/steam power cycles for concentrating solar power. International Journal of Ambient Energy, 43(1), 4716–4727. https://doi.org/10.1080/01430750.2021.1919552
  • Sharma, V., Nayak, J. K., and Kedare, S. B. (2015). Effects of shading and blocking in linear Fresnel reflector field. Solar Energy, 113, 114–138. https://doi.org/10.1016/J.SOLENER.2014.12.026
  • Sheikholeslami, M. (2022). Numerical investigation of solar system equipped with innovative turbulator and hybrid nanofluid. Solar Energy Materials and Solar Cells, 243, 111786. https://doi.org/10.1016/j.solmat.2022.111786
  • Siala, F. M. F., and Elayeb, M. E. (2001). Mathematical formulation of a graphical method for a no-blocking heliostat field layout. Renewable Energy, 23(1), 77–92. https://doi.org/10.1016/S0960-1481(00)00159-2
  • Soomro, M. I., Mengal, A., Memon, Y. A., Khan, M. W. A., Shafiq, Q. N., and Mirjat, N. H. (2019). Performance and economic analysis of concentrated solar power generation for Pakistan. Processes, 7(9), 575. https://doi.org/10.3390/pr7090575
  • Stine, W. B., and Diver, R. B. (1994). A compendium of solar dish/Stirling technology. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States). Retrieved from Sandia National Lab.(SNL-NM), Albuquerque, NM (United States) website: https://www.osti.gov/biblio/10130410
  • Tabak, C., Dinçer, H., Karayaz, K., Arslan, E., Yıldız, M. H., and Karayaz, S. (2009). Yoğunlaştırıcı Güneş Enerjisi Sistemleri ile Elektrik Enerjisi Üretimi. III. Enerji Verimliliği ve Kalitesi Sempozyumu. Retrieved from https://www.emo.org.tr/ekler/d787c069b9f2868_ek.pdf
  • Tang, C. W. (1986). Two-layer organic photovoltaic cell. Applied Physics Letters, 48(2), 183–185. https://doi.org/10.1063/1.96937
  • Tushar K. Ghosh, and Mark A. Prelas. (2011). Energy Resources and Systems: Renewable Resources (Vol. 2). Springer. https://doi.org/10.1007/978-94-007-1402-1
  • Üçgül, I., and Ergün, E. (2014). Linear Fresnel Solar Power Systems. Yekarum, 1(3). Retrieved from https://dergipark.org.tr/tr/download/article-file/204143
  • University of Delaware. (2007, July 30). University Of Delaware-led Team Sets Solar Cell Record. Retrieved December 5, 2023, from ScienceDaily website: https://www.sciencedaily.com/releases/2007/07/070726210931.htm
  • Vant-Hull, L. L. (1977). An educated ray trace approach to solar tower optics. Optical Engineering, 16(5), 497–504. https://doi.org/10.1117/12.7972123
  • Wang, J., Cui, Y., Xu, Y., Xian, K., Bi, P., Chen, Z., … others. (2022). A new polymer donor enables binary all-polymer organic photovoltaic cells with 18% efficiency and excellent mechanical robustness. Advanced Materials, 34(35), 2205009. https://doi.org/10.1002/adma.202205009
  • Wang, Z., Tang, A., Wang, H., Guo, Q., Guo, Q., Sun, X., … Zhou, E. (2023). Organic photovoltaic cells offer ultrahigh VOC of~ 1.2 V under AM 1.5 G light and a high efficiency of 21.2% under indoor light. Chemical Engineering Journal, 451, 139080. https://doi.org/10.1016/j.cej.2022.139080
  • William Grylls Adams. (1875). The action of light on selenium. Retrieved from https://www.amazon.co.uk/action-light-selenium-William-Grylls/dp/B0008ATF26
  • Wu, S.-Y., Xiao, L., Cao, Y., and Li, Y.-R. (2010). Convection heat loss from cavity receiver in parabolic dish solar thermal power system: A review. Solar Energy, 84(8), 1342–1355. https://doi.org/10.1016/j.solener.2010.04.008
  • Xu, Y., Lu, B., Luo, C., Wu, F., Li, X., and Zhang, L. (2022). Na2CO3 promoted CaO-based heat carrier for thermochemical energy storage in concentrated solar power plants. Chemical Engineering Journal, 435, 134852. https://doi.org/10.1016/j.cej.2022.134852
  • Zarza E. (2010). The Technologies for Concentrating Solar Radiation: Current State-of-the-Art and Potential for Improvement. TUBITAKMAM Energy Inst. Gebze Kocaeli Turkey.
  • Zarza, E., Valenzuela, L., Leo, J., Weyers, H.-D., Eickhoff, M., Eck, M., and Hennecke, K. (2002). The DISS project: direct steam generation in parabolic trough systems. Operation and maintenance experience and update on project status. J. Sol. Energy Eng., 124(2), 126–133. https://doi.org/10.1115/1.1467645
  • Zhang, T., An, C., Cui, Y., Zhang, J., Bi, P., Yang, C., … Hou, J. (2022). A universal nonhalogenated polymer donor for high-performance organic photovoltaic cells. Advanced Materials, 34(2), 2105803. https://doi.org/10.1002/adma.202105803

GÜNEŞ ENERJİSİNDEN ELEKTRİK ÜRETİM YÖNTEMLERİ

Year 2024, Issue: 716, 521 - 557, 03.10.2024

Abstract

Bu çalışmada, güneş enerjisini doğrudan elektrik enerjisine çeviren fotovoltaik hücreler ve dolaylı yoldan güneş enerjisini yoğunlaştırarak kızgın buhardan elektrik enerjisi üreten konsantre güneş enerjisi teknolojileri detaylı olarak incelenmiş, kendi aralarında sınıflandırılmış ve teknik olarak karşılaştırılmıştır. Güneş enerjisinden elektrik üretim yöntem ve teknolojileri üzerine yapılan incelemeler üç aşamada gerçekleştirilmiştir. Birinci aşamada, güneş enerjisinden elektrik üretim yöntemleri genel olarak incelenerek kapsamlı bir şema oluşturulmuştur. İkinci aşamada fotovoltaik hücrelerin yapıları ve çeşitleri incelenmiştir. Üçüncü aşamada ise konsantre güneş enerji sistemleri incelenmiştir. Son olarak güneş enerjisinden elektrik üretim sistemleri karşılaştırılmış ve sonuçlar sunulmuştur.

References

  • Abdolmaleki, L., and Berardi, U. (2024). Hybrid solar energy systems with hydrogen and electrical energy storage for a single house and a midrise apartment in North America. International Journal of Hydrogen Energy, 52, 1381–1394. Retrieved from https://www.sciencedirect.com/science/article/pii/S0360319923059682
  • Ackermann, A. S. E. (1915). The Utilisation of Solar Energy. Journal of the Royal Society of Arts, 63 (3258), 538–565. Retrieved from https://www.jstor.org/stable/41346462
  • Ahmed, M. M., Das, B. K., Das, P., Hossain, M. S., and Kibria, M. G. (2024). Energy management and sizing of a stand-alone hybrid renewable energy system for community electricity, fresh water, and cooking gas demands of a remote island. Energy Conversion and Management, 299, 117865. Retrieved from https://www.sciencedirect.com/science/article/pii/S0196890423012116
  • Alferov, Z. I., Andreev, V. M., Garbuzov, D. Z., Zhilyaev, Y. V, Morozov, E. P., Portnoi, E. L., and Trofim, V. G. (1971). Investigation of the influence of the AlAs-GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature. Sov. Phys. Semicond, 4(9), 1573–1575. Retrieved from http://62.44.99.18/photonics/Lasers/Beginning-of-the-Laser-Era-in-the-USSR.pdf#page=132 Arias, I., Cardemil, J., Zarza, E., Valenzuela, L., and Escobar, R. (2022). Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids. Renewable and Sustainable Energy Reviews, 168, 112844. https://doi.org/10.1016/j.rser.2022.112844
  • Asım Genç. (1998). Performance Tests of Parabolic Through Type Solar Concentrator Tracking Sun on One Axis (MSc). Gazi University, Ankara.
  • Avila-Marin, A. L., Fernandez-Reche, J., and Tellez, F. M. (2013). Evaluation of the potential of central receiver solar power plants: configuration, optimization and trends. Applied Energy, 112, 274–288. https://doi.org/10.1016/j.apenergy.2013.05.049
  • Ayşe Özge Küpeli. (2005). Solar cells and their efficiencies (MSc). Eskişehir Osmangazi University, Eskişehir.
  • Baharoon, D. A., Rahman, H. A., Omar, W. Z. W., and Fadhl, S. O. (2015). Historical development of concentrating solar power technologies to generate clean electricity efficiently – A review. Renewable and Sustainable Energy Reviews, 41, 996–1027. https://doi.org/10.1016/j.rser.2014.09.008
  • Bakos, G. C. (2006). Design and construction of a two-axis Sun tracking system for parabolic trough collector (PTC) efficiency improvement. Renewable Energy, 31(15), 2411–2421. https://doi.org/10.1016/j.renene.2005.11.008
  • Barlev, D., Vidu, R., and Stroeve, P. (2011, October 1). Innovation in concentrated solar power. Solar Energy Materials and Solar Cells, Vol. 95, pp. 2703–2725. Elsevier B.V. https://doi.org/10.1016/j.solmat.2011.05.020
  • Baum, V. A., Aparasi, R. R., and Garf, B. A. (1957). High-power solar installations. Solar Energy, 1(1), 6–12. https://doi.org/10.1016/0038-092X(57)90049-X
  • Bean, John R, and Diver, R. B. (1995). Technical status of the dish/stirling joint venture program. Retrieved from https://www.osti.gov/biblio/79749
  • Bean, J R, and Diver, R. B. (1992). The CPG 5-kWe dish-Stirling development program. Retrieved from https://www.sae.org/publications/technical-papers/content/929181/
  • Bean, J R, and Diver, R. B. (1993). Performance of the CPG 7. 5-kW [sub e] Dish-Stirling system. Retrieved from https://www.osti.gov/biblio/6158070
  • Bi, P., Ren, J., Zhang, S., Wang, J., Chen, Z., Gao, M., … others. (2022). Low-cost and high-performance poly (thienylene vinylene) derivative donor for efficient versatile organic photovoltaic cells. Nano Energy, 100, 107463. https://doi.org/10.1016/j.nanoen.2022.107463
  • Blieske, U., Müller-Ost, J., Meisenzahl, K., Grommes, E.-M., Gecke, R., Schneble, N., … Volk, M. (2019). Current and future trends in photovoltaic technology. 2019 International Energy and Sustainability Conference (IESC), 1–5. https://doi.org/10.1109/IESC47067.2019.8976871
  • Boutchich, M., Alvarez, J., Diouf, D., i Cabarrocas, P. R., Liao, M., Masataka, I., … Kleider, J.-P. (2012). Amorphous silicon diamond based heterojunctions with high rectification ratio. Journal of Non-Crystalline Solids, 358(17), 2110–2113. https://doi.org/10.1016/j.jnoncrysol.2011.12.067
  • Chander, S., and Tripathi, S. K. (2023). Advancement in CdMnTe-based photovoltaic cells: Grain growth, deep states and device efficiency assessment with chlorine treatment. Solar Energy, 250, 91–96. https://doi.org/10.1016/j.solener.2022.12.033
  • Chen, Y. T., Kribus, A., Lim, B. H., Lim, C. S., Chong, K. K., Karni, J., … Bligh, T. P. (2004). Comparison of two sun tracking methods in the application of a heliostat field. J. Sol. Energy Eng., 126(1), 638–644. https://doi.org/10.1115/1.1634583
  • Clean Energy Institute. (2014). Copper indium selenide(CIS) solar cell. Retrieved July 8, 2021, from https://www.cei.washington.edu/wp-content/uploads/2014/04/PVcelldisplaycards.pdf
  • Collares-Pereira, M., Gordon, J. M., Rabl, A., and Winston, R. (1991). High concentration two-stage optics for parabolic trough solar collectors with tubular absorber and large rim angle. Solar Energy, 47(6), 457–466. https://doi.org/10.1016/0038-092X(91)90114-C
  • Collares-Pereira, M., Ogallagher, J., Rabl, A., Winston, R., Cole, R., Gorski, A., … Schertz, W. (1979). Applications of CPC’s in solar energy-An overview. Sun II, 1, 542–546. Retrieved from https://ui.adsabs.harvard.edu/abs/1979sun2.conf..542C/abstract
  • Cucchiella, F., D’Adamo, I., Gastaldi, M., and Koh, S. C. L. (2010). A photovoltaic system in a residential building: Environmental and economic optimization analysis. 2010 8th International Conference on Supply Chain Management and Information, 1–9. Retrieved from https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5681782
  • Doraiswamy, D. (2002). The origins of rheology: a short historical excursion. Rheology Bulletin, 71(1), 1–9. Retrieved from http://www0.rheology.org/sor/publications/rheology_b/Jan02/Origin_of_Rheology.pdf
  • D. R. Mills. (2001). Solar Thermal Electricity. In J. Gordon (Ed.), Solar Energy: The State of the Art : ISES Position Papers. James & James.
  • Eddine Boukelia, T., and Mecibah, M.-S. (2013). Parabolic trough solar thermal power plant: Potential, and projects development in Algeria. Renewable and Sustainable Energy Reviews, 21, 288–297. https://doi.org/10.1016/j.rser.2012.11.074
  • Engin Ergün. (2011). Usage of linear Fresnel solar power systems at textile companies to supply energy (MsC). Süleyman Demirel University, Isparta.
  • Eric Mack. (2016, May 17). New world record set for converting sunlight to electricity. Retrieved December 5, 2023, from Newatlas website: https://newatlas.com/solar-cell-electricity-efficiency-world-record-unsw/43384/
  • Ermer, J. H., Jones, R. K., Hebert, P., Pien, P., King, R. R., Bhusari, D., … others. (2012). Status of C3MJ+ and C4MJ production concentrator solar cells at spectrolab. IEEE Journal of Photovoltaics, 2(2), 209–213. https://doi.org/10.1109/JPHOTOV.2011.2180893
  • Falope, T., Lao, L., Hanak, D., and Huo, D. (2024). Hybrid energy system integration and management for solar energy: A review. Energy Conversion and Management: X, 100527. Retrieved from https://www.sciencedirect.com/science/article/pii/S2590174524000059
  • Fernández-Garcia, A., Zarza, E., Valenzuela, L., and Pérez, M. (2010). Parabolic-trough solar collectors and their applications. Renewable and Sustainable Energy Reviews, 14(7), 1695–1721. https://doi.org/10.1016/j.rser.2010.03.012
  • Fortunato, E., Gaspar, D., Duarte, P., Pereira, L., Águas, H., Vicente, A., … Martins, R. (2016). Optoelectronic devices from bacterial nanocellulose. In Bacterial Nanocellulose (pp. 179–197). Elsevier. https://doi.org/10.1016/B978-0-444-63458-0.00011-1
  • Fraas, L. M., and O’Neill, M. J. (2023). History of solar cell development. In Low-cost solar electric power (pp. 1–12). Springer.
  • Gallup, D., Mancini, T., Christensen, J., and Beninga, K. (1994). The utility-scale joint-venture program. Intersociety Energy Conversion Engineering Conference, 3941. https://doi.org/10.2514/6.1994-3941
  • Garcia-Valladares, O., and Velázquez, N. (2009). Numerical simulation of parabolic trough solar collector: Improvement using counter flow concentric circular heat exchangers. International Journal of Heat and Mass Transfer, 52(3–4), 597–609. https://doi.org/10.1016/j.ijheatmasstransfer.2008.08.004
  • Gaul, H., and Rabl, A. (1980). Incidence-angle modifier and average optical efficiency of parabolic trough collectors. https://doi.org/10.1115/1.3266115
  • Gee, R., and Institute, S. E. R. (1980). Line-focus Sun Trackers. Solar Energy Research Institute. Retrieved from https://books.google.com.tr/books?id=Hy-twwEACAAJ
  • Geisz, J. F., Steiner, M. A., Jain, N., Schulte, K. L., France, R. M., McMahon, W. E., … Friedman, D. J. (2018). Building a Six-Junction Inverted Metamorphic Concentrator Solar Cell. IEEE Journal of Photovoltaics, 8(2), 626–632. https://doi.org/10.1109/JPHOTOV.2017.2778567
  • Goetzberger, A., Luther, J., and Willeke, G. (2002). Solar cells: past, present, future. Solar Energy Materials and Solar Cells, 74(1–4), 1–11. https://doi.org/10.1016/S0927-0248(02)00042-9
  • Gong, J., and Sumathy, K. (2016). Active solar water heating systems. In Advances in Solar Heating and Cooling (pp. 203–224). Elsevier. https://doi.org/10.1016/B978-0-08-100301-5.00009-6
  • Green, M. A., Hishikawa, Y., Dunlop, E. D., Levi, D. H., Hohl-Ebinger, J., and Ho-Baillie, A. W. Y. (2018). Solar cell efficiency tables (version 52). Progress in Photovoltaics: Research and Applications, 26(7), 427–436. https://doi.org/10.1002/pip.3040
  • Gülay İşler. (2018). Energy production analysis and applications of parabolic through collector and solar power tower (MSc). Bilecik Şeyh Edebali University, Bilecik.
  • Güven, A. F., and Mete, M. K. (2021). Balkesir’in Erdek ilçesi için şebeke bağlantl hibrit enerji sistemi fizibilite çalışması ve ekonomik analizi. Mühendis ve Makina, 63(706), 138–158. Retrieved from https://dergipark.org.tr/tr/download/article-file/1935109
  • Güven, A. F., and Samy, M. M. (2022). Performance analysis of autonomous green energy system based on multi and hybrid metaheuristic optimization approaches. Energy Conversion and Management, 269, 116058. Retrieved from https://www.sciencedirect.com/science/article/pii/S0196890422008469
  • Güven, A. F., Yörükeren, N., and Mengi, O. Ö. (2024). Multi-objective optimization and sustainable design: a performance comparison of metaheuristic algorithms used for on-grid and off-grid hybrid energy systems. Neural Computing and Applications, 36(13), 7559–7594. Retrieved from https://link.springer.com/article/10.1007/s00521-024-09585-2
  • Güven, A. F., Yörükeren, N., and Samy, M. M. (2022). Design optimization of a stand-alone green energy system of university campus based on Jaya-Harmony Search and Ant Colony Optimization algorithms approaches. Energy, 253, 124089. Retrieved from https://www.sciencedirect.com/science/article/pii/S0360544222009926
  • Güven, A. F., and Yücel, E. (2023). Application of HOMER in assessing and controlling renewable energy-based hybrid EV charging stations across major Turkish cities. International Journal of Energy Studies, 8(4), 747–780. Retrieved from https://dergipark.org.tr/en/download/article-file/3250495
  • Hession, P. J., and Bonwick, W. J. (1984). Experience with a sun tracker system. Solar Energy, 32(1), 3–11. https://doi.org/10.1016/0038-092X(84)90042-2
  • IEA. (2023). Renewables 2023 Analysis and forecast to 2028. Retrieved from https://iea.blob.core.windows.net/assets/96d66a8b-d502-476b-ba94-54ffda84cf72/Renewables_2023.pdf International Energy Agency. (2011). Solar Energy Perspectives. Retrieved from https://iea.blob.core.windows.net/assets/2b3c53f4-1c8f-478c-a4fa-a98597cde27b/SolarEnergyPerspectives.pdf
  • Ishibashi, A., Itabashi, M., Mori, Y., Kaneko, K., Kawado, S., and Watanabe, N. (1986). Raman scattering from (AlAs) m (GaAs) n ultrathin-layer superlattices. Physical Review B, 33(4), 2887. https://doi.org/10.1103/PhysRevB.33.2887
  • Jagdeo, K., Sharon, M., and White, S. (2021). Carbon Nanofiber and Photovoltaic Solar Cell. Carbon Nanofibers: Fundamentals and Applications, 313. https://doi.org/10.1002/9781119769149.ch12
  • Jeter, S. M. (1986). Calculation of the concentrated flux density distribution in parabolic trough collectors by a semifinite formulation. Solar Energy, 37(5), 335–345. https://doi.org/10.1016/0038-092X(86)90130-1
  • John Fitzgerald Weaver. (2018, December 17). Efficiency record isn’t the biggest change for Alta Devices’ GaAS solar technology. PV Magazine. https://doi.org/10.1109/ACCESS.2020.3039457
  • Kalogirou, S., Lloyd, S., and Ward, J. (1997). Modelling, optimisation and performance evaluation of a parabolic trough solar collector steam generation system. Solar Energy, 60(1), 49–59. https://doi.org/10.1016/S0038-092X(96)00131-4
  • Kapluhan, E. (2015). A Research In The Fıeld Of Energy Geography: Usage Of Solar Energy In The World And Turkey. Coğrafya Dergisi, (29), 70–98. Retrieved from https://dergipark.org.tr/tr/download/article-file/231256
  • Kazmerski, L. (2012). Best research cell efficiencies chart. In National Renewable Energy Laboratory (NREL). Retrieved from https://www.nrel.gov/pv/cell-efficiency.html
  • Keskinel, S. (2015). Applied analysis of photovoltaic power systems in buildings within the scope of energy efficiency (MSc). İstanbul Technical University, İstanbul.
  • Khan, M. I., Asfand, F., and Al-Ghamdi, S. G. (2022). Progress in research and technological advancements of thermal energy storage systems for concentrated solar power. Journal of Energy Storage, 55, 105860. https://doi.org/10.1016/j.est.2022.105860
  • Kılıç Abdurrahman, and Öztürk Aksel. (1983). Güneş Enerjisi. Kipaş Dağıtımcılık. King, R Richard, Boca, A., Hong, W., Liu, X. Q., Bhusari, D., Larrabee, D., … others. (2009). Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells. 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 21, 55. Retrieved from https://www.researchgate.net/profile/Chris-Fetzer/publication/267409590_Band-Gap-Engineered_Architectures_for_High-Efficiency_Multijunction_Concentrator_Solar_Cells/links/54590d030cf26d5090acff56/Band-Gap-Engineered-Architectures-for-High-Efficiency-Multijunction-Concentrator-Solar-Cells.pdf
  • King, R R, Law, a_DC, Edmondson, K. M., Fetzer, C. M., Kinsey, G. S., Yoon, H., … Karam, N. H. (2007). 40% efficient metamorphic GaInP/ GaInAs/ Ge multijunction solar cells. Applied Physics Letters, 90(18). https://doi.org/10.1063/1.2734507
  • Kribus, A., Vishnevetsky, I., Yogev, A., and Rubinov, T. (2004). Closed loop control of heliostats. Energy, 29(5–6), 905–913. https://doi.org/10.1016/S0360-5442(03)00195-6
  • Levent Çolak. (2003). Mathematical modelling design and technical optimization of sun tracking parabolic trough solar collectors (MSc). Gazi University, Ankara.
  • Liu, Z., Jin, Z., Li, G., Zhao, X., and Badiei, A. (2022). Study on the performance of a novel photovoltaic/thermal system combining photocatalytic and organic photovoltaic cells. Energy Conversion and Management, 251, 114967. https://doi.org/10.1016/j.enconman.2021.114967
  • Malinowski, M., Leon, J. I., and Abu-Rub, H. (2017). Solar photovoltaic and thermal energy systems: Current technology and future trends. Proceedings of the IEEE, 105(11), 2132–2146. https://doi.org/10.1109/JPROC.2017.2690343
  • Mancini, T., Heller, P., Butler, B., Osborn, B., Schiel, W., Goldberg, V., … Moreno, J. (2003). Dish-stirling systems: An overview of development and status. Journal of Solar Energy Engineering, Transactions of the ASME, 125(2), 135–151. https://doi.org/10.1115/1.1562634
  • Mancini, T. R. (1997). Solar-electric dish Stirling system development. Retrieved from https://www.osti.gov/servlets/purl/622476
  • Ma, T., Yang, H., and Lu, L. (2014). Solar photovoltaic system modeling and performance prediction. Renewable and Sustainable Energy Reviews, 36, 304–315. https://doi.org/10.1016/j.rser.2014.04.057
  • Merchán, R. P., Santos, M. J., Medina, A., and Hernández, A. C. (2022). High temperature central tower plants for concentrated solar power: 2021 overview. Renewable and Sustainable Energy Reviews, 155, 111828. https://doi.org/10.1016/j.rser.2021.111828
  • Messenger, R. A., and Abtahi, A. (2018). Photovoltaic systems engineering. CRC press.
  • Mills, D. (2004). Advances in solar thermal electricity technology. Solar Energy, 76(1–3), 19–31. https://doi.org/10.1016/S0038-092X(03)00102-6
  • Mills, D. R., and Morrison, G. L. (2000). Compact linear Fresnel reflector solar thermal powerplants. Solar Energy, 68(3), 263–283. https://doi.org/10.1016/S0038-092X(99)00068-7
  • Mitigation, C. C. (2011). IPCC special report on renewable energy sources and climate change mitigation. In Renewable Energy (Vol. 20). Retrieved from https://www.uncclearn.org/wp-content/uploads/library/ipcc15.pdf
  • Mohanad Abdulazeez Abdulraheem Alfellag. (2014). Modeling And Experimental Investigation Of Parabolic Trough Solar Collector (MSc). Embry-Riddle Aeronautical University.
  • Morin, G., Karl, M., Mertins, M., and Selig, M. (2015). Molten salt as a heat transfer fluid in a linear Fresnel collector–commercial application backed by demonstration. Energy Procedia, 69, 689–698. https://doi.org/10.1016/j.egypro.2015.03.079
  • Nelson, D. T., Evans, D. L., and Bansal, R. K. (1975). Linear Fresnel lens concentrators. Solar Energy, 17(5), 285–289. https://doi.org/10.1016/0038-092X(75)90045-6
  • NREL. (2003). Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts. Retrieved from https://www.nrel.gov/docs/fy04osti/34440.pdf
  • NREL. (2008). NREL Solar Cell Sets World Efficiency Record at 40.8 Percent. Retrieved from https://phys.org/news/2008-08-nrel-solar-cell-world-efficiency.html
  • NREL. (2012a). Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power. Retrieved from https://www.nrel.gov/docs/fy13osti/56416.pdf
  • NREL. (2012b). Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics. Retrieved from https://www.nrel.gov/docs/fy13osti/56487.pdf
  • NREL. (2020, April 13). News Release: NREL Six-Junction Solar Cell Sets Two World Records for Efficiency. Retrieved November 25, 2023, from National Renewable Energy Laboratory website: https://www.nrel.gov/news/press/2020/nrel-six-junction-solar-cell-sets-two-world-records-for-efficiency.html
  • NREL. (2023a). Best Research-Cell Efficiency Chart. Retrieved from https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf
  • NREL. (2023b). Champion Photovoltaic Module Efficiency Chart. Retrieved from https://www.nrel.gov/pv/module-efficiency.html
  • Olgun Konur. (2016). Energy efficiency improvement techniques on solar powered boats (MSc). Dokuz Eylül University, İzmir.
  • Ong, S., Campbell, C., Denholm, P., Margolis, R., and Heath, G. (2013). Land-use requirements for solar power plants in the United States. Retrieved from https://www.nrel.gov/docs/fy13osti/56290.pdf
  • OPEC. (2022). 2022 OPEC’s World Oil Outlook 2045. Retrieved from https://www.opec.org/opec_web/static_files_project/media/downloads/WOO_2022.pdf
  • Orton, J. W. (2008). The story of semiconductors. OUP Oxford.
  • Özgün, U. Z., ÖZDEMİR, T., and ÖZMEN, Ö. T. (2022). Associating Photovoltaic Energy Production with Meteorological Conditions: The Example of İzmir Bakırçay University. The Journal of Graduate School of Natural and Applied Sciences of Mehmet Akif Ersoy University, 13(1), 49–62. https://doi.org/10.29048/makufebed.1053282
  • Padmanabhan, J. B., and Anbazhagan, G. (2024). A comprehensive review of hybrid renewable energy charging system to optimally drive permanent magnet synchronous motors in electric vehicle. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 3499–3521. Retrieved from https://www.tandfonline.com/doi/full/10.1080/15567036.2024.2319347
  • Patricia Scalco, Jacqueline Biancon Copetti, and Mario Henrique Macagnan. (2021). Linear Fresnel Solar Collector Concentrator – A Review. 26th ABCM Int. Cong. of Mechanical Engineering. Florianopolis. Retrieved from https://www.researchgate.net/profile/Patricia-Scalco-2/publication/357067050_Linear_Fresnel_Solar_Collector_Concentrator_-_A_Review/links/61d2ed42da5d105e5517a269/Linear-Fresnel-Solar-Collector-Concentrator-A-Review.pdf
  • Petrova-Koch, V., Hezel, R., and Goetzberger, A. (2008). High-efficient low-cost photovoltaics. Springer. https://doi.org/10.1007/978-3-030-22864-4
  • Prevenslik, T. V. (2003). Cavitation induced Becquerel effect. Ultrasonics, 41(4), 323–327. https://doi.org/10.1016/S0041-624X(03)00083-0
  • Richard Martinarchive page. (2016, March 3). First Solar’s Cells Break Efficiency Record. Retrieved December 5, 2023, from technologyreview website: https://www.technologyreview.com/2016/03/03/161753/first-solars-cells-break-efficiency-record/
  • Riffelmann, K.-J., Neumann, A., and Ulmer, S. (2006). Performance enhancement of parabolic trough collectors by solar flux measurement in the focal region. Solar Energy, 80(10), 1303–1313. https://doi.org/10.1016/j.solener.2005.09.001
  • Russell S Ohl. (1948). Patent No. US2443542A. USA. Retrieved from https://patentimages.storage.googleapis.com/21/a3/d9/a1e314a0faba89/US2443542.pdf
  • Saeed, M. A., Shahzad, A., Rasool, K., Mateen, F., Oh, J.-M., and Shim, J. W. (2022). 2D MXene: a potential candidate for photovoltaic cells? A critical review. Advanced Science, 9(10), 2104743. https://doi.org/10.1002/advs.202104743
  • Salhi, B. (2022). The photovoltaic cell based on CIGS: principles and technologies. Materials, 15(5), 1908. https://doi.org/10.3390/ma15051908
  • Sarver, T., Al-Qaraghuli, A., and Kazmerski, L. L. (2013). A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renewable and Sustainable Energy Reviews, 22, 698–733. https://doi.org/10.1016/j.rser.2012.12.065
  • Şen H. (2009). Temiz Dünya Rehberi: Güneş Enerjisi. Doğa Yayınları.
  • Shakibi, H., Afzal, S., Shokri, A., and Sobhani, B. (2022). Utilization of a phase change material with metal foam for the performance improvement of the photovoltaic cells. Journal of Energy Storage, 51, 104466. https://doi.org/10.1016/j.est.2022.104466
  • Sharaf, M., Huzayyin, A. S., and Yousef, M. S. (2022). Performance enhancement of photovoltaic cells using phase change material (PCM) in winter. Alexandria Engineering Journal, 61(6), 4229–4239. https://doi.org/10.1016/j.aej.2021.09.044
  • Sharma, A., Shukla, A. K., Singh, O., and Sharma, M. (2022). Recent advances in gas/steam power cycles for concentrating solar power. International Journal of Ambient Energy, 43(1), 4716–4727. https://doi.org/10.1080/01430750.2021.1919552
  • Sharma, V., Nayak, J. K., and Kedare, S. B. (2015). Effects of shading and blocking in linear Fresnel reflector field. Solar Energy, 113, 114–138. https://doi.org/10.1016/J.SOLENER.2014.12.026
  • Sheikholeslami, M. (2022). Numerical investigation of solar system equipped with innovative turbulator and hybrid nanofluid. Solar Energy Materials and Solar Cells, 243, 111786. https://doi.org/10.1016/j.solmat.2022.111786
  • Siala, F. M. F., and Elayeb, M. E. (2001). Mathematical formulation of a graphical method for a no-blocking heliostat field layout. Renewable Energy, 23(1), 77–92. https://doi.org/10.1016/S0960-1481(00)00159-2
  • Soomro, M. I., Mengal, A., Memon, Y. A., Khan, M. W. A., Shafiq, Q. N., and Mirjat, N. H. (2019). Performance and economic analysis of concentrated solar power generation for Pakistan. Processes, 7(9), 575. https://doi.org/10.3390/pr7090575
  • Stine, W. B., and Diver, R. B. (1994). A compendium of solar dish/Stirling technology. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States). Retrieved from Sandia National Lab.(SNL-NM), Albuquerque, NM (United States) website: https://www.osti.gov/biblio/10130410
  • Tabak, C., Dinçer, H., Karayaz, K., Arslan, E., Yıldız, M. H., and Karayaz, S. (2009). Yoğunlaştırıcı Güneş Enerjisi Sistemleri ile Elektrik Enerjisi Üretimi. III. Enerji Verimliliği ve Kalitesi Sempozyumu. Retrieved from https://www.emo.org.tr/ekler/d787c069b9f2868_ek.pdf
  • Tang, C. W. (1986). Two-layer organic photovoltaic cell. Applied Physics Letters, 48(2), 183–185. https://doi.org/10.1063/1.96937
  • Tushar K. Ghosh, and Mark A. Prelas. (2011). Energy Resources and Systems: Renewable Resources (Vol. 2). Springer. https://doi.org/10.1007/978-94-007-1402-1
  • Üçgül, I., and Ergün, E. (2014). Linear Fresnel Solar Power Systems. Yekarum, 1(3). Retrieved from https://dergipark.org.tr/tr/download/article-file/204143
  • University of Delaware. (2007, July 30). University Of Delaware-led Team Sets Solar Cell Record. Retrieved December 5, 2023, from ScienceDaily website: https://www.sciencedaily.com/releases/2007/07/070726210931.htm
  • Vant-Hull, L. L. (1977). An educated ray trace approach to solar tower optics. Optical Engineering, 16(5), 497–504. https://doi.org/10.1117/12.7972123
  • Wang, J., Cui, Y., Xu, Y., Xian, K., Bi, P., Chen, Z., … others. (2022). A new polymer donor enables binary all-polymer organic photovoltaic cells with 18% efficiency and excellent mechanical robustness. Advanced Materials, 34(35), 2205009. https://doi.org/10.1002/adma.202205009
  • Wang, Z., Tang, A., Wang, H., Guo, Q., Guo, Q., Sun, X., … Zhou, E. (2023). Organic photovoltaic cells offer ultrahigh VOC of~ 1.2 V under AM 1.5 G light and a high efficiency of 21.2% under indoor light. Chemical Engineering Journal, 451, 139080. https://doi.org/10.1016/j.cej.2022.139080
  • William Grylls Adams. (1875). The action of light on selenium. Retrieved from https://www.amazon.co.uk/action-light-selenium-William-Grylls/dp/B0008ATF26
  • Wu, S.-Y., Xiao, L., Cao, Y., and Li, Y.-R. (2010). Convection heat loss from cavity receiver in parabolic dish solar thermal power system: A review. Solar Energy, 84(8), 1342–1355. https://doi.org/10.1016/j.solener.2010.04.008
  • Xu, Y., Lu, B., Luo, C., Wu, F., Li, X., and Zhang, L. (2022). Na2CO3 promoted CaO-based heat carrier for thermochemical energy storage in concentrated solar power plants. Chemical Engineering Journal, 435, 134852. https://doi.org/10.1016/j.cej.2022.134852
  • Zarza E. (2010). The Technologies for Concentrating Solar Radiation: Current State-of-the-Art and Potential for Improvement. TUBITAKMAM Energy Inst. Gebze Kocaeli Turkey.
  • Zarza, E., Valenzuela, L., Leo, J., Weyers, H.-D., Eickhoff, M., Eck, M., and Hennecke, K. (2002). The DISS project: direct steam generation in parabolic trough systems. Operation and maintenance experience and update on project status. J. Sol. Energy Eng., 124(2), 126–133. https://doi.org/10.1115/1.1467645
  • Zhang, T., An, C., Cui, Y., Zhang, J., Bi, P., Yang, C., … Hou, J. (2022). A universal nonhalogenated polymer donor for high-performance organic photovoltaic cells. Advanced Materials, 34(2), 2105803. https://doi.org/10.1002/adma.202105803
There are 120 citations in total.

Details

Primary Language English
Subjects Solar Energy Systems
Journal Section Collection
Authors

Berire Şen Ayvaz 0000-0002-1414-705X

Alper Bayrak 0000-0003-1851-8951

Early Pub Date September 25, 2024
Publication Date October 3, 2024
Submission Date December 1, 2023
Acceptance Date June 4, 2024
Published in Issue Year 2024 Issue: 716

Cite

APA Şen Ayvaz, B., & Bayrak, A. (2024). ELECTRICITY GENERATION METHODS FROM SOLAR ENERGY. Mühendis Ve Makina(716), 521-557.

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520