AUTONOMOUS PARKING ROBOT DESIGN
Yıl 2025,
Cilt: 66 Sayı: 720, 410 - 423, 30.09.2025
Soner Koçak
,
Abdullah Demir
,
Garip Genç
,
Abdullah Akyar
,
Selim Hartomacıoğlu
Öz
In this study, a parking robot design has been presented for use in automated parking systems. It is
anticipated that this parking robot can reduce parking times, minimize the need for mechanical equipment on
parking floors, and eliminate movement constraints. The design consists of two identical modules with a height of
100 mm, utilizing the potential of Automated Guided Vehicles (AGVs). This study examines the design and
calculations of the drive unit and lifting arms, developing new designs that comply with height limitations. Based
on the load and speed of the parking robot, power calculations and strength analyses were conducted for the drive
unit and lifting arms. The analysis results indicate that the maximum stress and deformation values of the main
components of the drive unit fall within the desired tolerance range, depending on the selected materials. The Von
Mises stress value for the wheel axle was measured at 143.98 MPa, while the deformation value for the
polyurethane material was determined to be 0.042 mm.
Teşekkür
This study was carried out within the scope of a master’s thesis of the Department of Mechanical Engineering, Institute of Science, Marmara University, in collaboration with Parkolay / Automatic Parking Systems R&D Center
Kaynakça
-
Dal, M. (2006). Anabilim Dalı: Disiplinlerarası Programı: Mekatronik Mühendisliği İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü Holonomik Olmayan Kısıtlara Sahip Mobil Robot Modellemesi, Simülasyonu ve Tasarımı Yüksek Lisans Tez.
-
Gfrerrer, A. (2008). Geometry and kinematics of the Mecanum wheel. Computer Aided Geometric Design, 25(9), 784–791. https://doi.org/10.1016/j.cagd.2008.07.008
-
Jiang, J., Zhang, S., & He, Y. (2020). Wheel design and motion analysis of a new heavy-duty AGV in aircraft assembly lines. Assembly Automation, 40(3), 387–397. https://doi.org/10.1108/AA-01-2019-0009
-
Kutay, M. G. (2009). Mukavemet değerleri. Ankara: MMO Yayınları
-
Moshayedi, A. J., Li, J., & Liao, L. (2019). AGV (automated guided vehicle) robot: Mission and obstacles in design and performance. Journal of Simulation & Analysis of Novel Technologies in Mechanical Engineering, 12(4).
-
Shen, K., Qiu, Q., Wu, Q., Lin, Z., & Wu, Y. (2021). Research on the development status of AGV parking robot based on patent analysis. Journal of Physics: Conference Series, 1905(1). IOP Publishing Ltd.
https://doi.org/10.1088/1742-6596/1905/1/012018
-
Sun, H., Liu, R., Zhao, C., & Wei, H. (2019). Design of Four Wheel Drive Four Wheel Steering AGV And Trajectory Tracking Control Research. (9), 1–5.
-
Vis, I. F. A. (2006). Survey of research in the design and control of automated guided vehicle systems. European Journal of Operational Research, 170(3), 677–709. https://doi.org/10.1016/j.ejor.2004.09.020
-
Wu, G., Xu, X., Gong, Y. (Yale), De Koster, R., & Zou, B. (2019). Optimal design and planning for compact automated parking systems. European Journal of Operational Research, 273(3), 948–967.
https://doi.org/10.1016/j.ejor.2018.09.014
-
Xing, Y., Yang, Y., Zu, Q., & Yu, J. (2019). Application of AGV technology and design and calculation of driving
system. AIP Conference Proceedings, 2073(December 2016). https://doi.org/10.1063/1.5090682
-
Yang, Y., Wang, W., Fan, Z., Zhang, M., & Liu, T. (2019). Design and simulation of cooperative parking robot.
IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 2019-July, 1287–1292.
https://doi.org/10.1109/AIM.2019.8868785
-
URL 1: https://www.matweb.com/search/DataSheet.aspx?MatGUID=2b2b98cba00041f284fd76b317bab43f ;
Overview of materials AISI 1045 Steel, as cold drawn, 32-50 mm (1.25-2 in) round; 27.05.2024
-
URL 2: https://www.matweb.com/search/DataSheet.aspx?MatGUID=b4c5102d22ef42758ad6888c9cd34dd9;
Overview of materials for Thermoplastic Polyurethane (TPUR), Polyether Grade, 27.05.2024
Otonom Park Robotu Tasarımı
Yıl 2025,
Cilt: 66 Sayı: 720, 410 - 423, 30.09.2025
Soner Koçak
,
Abdullah Demir
,
Garip Genç
,
Abdullah Akyar
,
Selim Hartomacıoğlu
Öz
Bu çalışmada otomatik otopark sistemlerinde kullanılmak üzere bir park robotu tasarımı sunulmuştur. Bu park
robotu ile park sürelerinin azaltılabileceği, park katlarında bulunan mekanik ekipmanlardan tasarruf edilebileceği
ve hareket kısıtlarını ortadan kaldırılabileceği öngörülmüştür.100 mm yükseklikte 2 eş modülden oluşan park
robotu tasarımında Otomatik Yönlendirmeli Araçların (AGV) kullanım potansiyelinden faydalanılmıştır. Yürütme
grubu ve taşıma kolları tasarımları ile hesaplamalarının incelendiği bu çalışmada yükseklik sınırına uygun olarak
yeni tasarımlar geliştirilmiştir. Park robotunun yük ve hızına bağlı olarak yürütme grubu ve taşıma kolları için
gereken güç hesabı ve dayanım analizi yapılmıştır. Analiz sonuçları incelendiğinde yürütme grubu temel
parçalarının maksimum gerilme ve deformasyon değerleri, seçilen malzemelere bağlı olarak istenilen tolerans
aralığındadır. Tekerlek mili için Von Mises gerilme değeri 143.98 MPa, poliüretan malzeme için deformasyon
değeri 0.042 mm olarak ölçülmüştür.
Teşekkür
Bu çalışma, Marmara Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği Anabilim Dalı'nın Parkolay / Otomatik Park Sistemleri Ar-Ge Merkezi işbirliğiyle hazırladığı yüksek lisans tezi kapsamında gerçekleştirilmiştir.
Kaynakça
-
Dal, M. (2006). Anabilim Dalı: Disiplinlerarası Programı: Mekatronik Mühendisliği İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü Holonomik Olmayan Kısıtlara Sahip Mobil Robot Modellemesi, Simülasyonu ve Tasarımı Yüksek Lisans Tez.
-
Gfrerrer, A. (2008). Geometry and kinematics of the Mecanum wheel. Computer Aided Geometric Design, 25(9), 784–791. https://doi.org/10.1016/j.cagd.2008.07.008
-
Jiang, J., Zhang, S., & He, Y. (2020). Wheel design and motion analysis of a new heavy-duty AGV in aircraft assembly lines. Assembly Automation, 40(3), 387–397. https://doi.org/10.1108/AA-01-2019-0009
-
Kutay, M. G. (2009). Mukavemet değerleri. Ankara: MMO Yayınları
-
Moshayedi, A. J., Li, J., & Liao, L. (2019). AGV (automated guided vehicle) robot: Mission and obstacles in design and performance. Journal of Simulation & Analysis of Novel Technologies in Mechanical Engineering, 12(4).
-
Shen, K., Qiu, Q., Wu, Q., Lin, Z., & Wu, Y. (2021). Research on the development status of AGV parking robot based on patent analysis. Journal of Physics: Conference Series, 1905(1). IOP Publishing Ltd.
https://doi.org/10.1088/1742-6596/1905/1/012018
-
Sun, H., Liu, R., Zhao, C., & Wei, H. (2019). Design of Four Wheel Drive Four Wheel Steering AGV And Trajectory Tracking Control Research. (9), 1–5.
-
Vis, I. F. A. (2006). Survey of research in the design and control of automated guided vehicle systems. European Journal of Operational Research, 170(3), 677–709. https://doi.org/10.1016/j.ejor.2004.09.020
-
Wu, G., Xu, X., Gong, Y. (Yale), De Koster, R., & Zou, B. (2019). Optimal design and planning for compact automated parking systems. European Journal of Operational Research, 273(3), 948–967.
https://doi.org/10.1016/j.ejor.2018.09.014
-
Xing, Y., Yang, Y., Zu, Q., & Yu, J. (2019). Application of AGV technology and design and calculation of driving
system. AIP Conference Proceedings, 2073(December 2016). https://doi.org/10.1063/1.5090682
-
Yang, Y., Wang, W., Fan, Z., Zhang, M., & Liu, T. (2019). Design and simulation of cooperative parking robot.
IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 2019-July, 1287–1292.
https://doi.org/10.1109/AIM.2019.8868785
-
URL 1: https://www.matweb.com/search/DataSheet.aspx?MatGUID=2b2b98cba00041f284fd76b317bab43f ;
Overview of materials AISI 1045 Steel, as cold drawn, 32-50 mm (1.25-2 in) round; 27.05.2024
-
URL 2: https://www.matweb.com/search/DataSheet.aspx?MatGUID=b4c5102d22ef42758ad6888c9cd34dd9;
Overview of materials for Thermoplastic Polyurethane (TPUR), Polyether Grade, 27.05.2024