Research Article
BibTex RIS Cite

Preparation of Montmorillonite Modified with Long Hydrocarbon Tail-Bearing CTA+ Ions-Polystyrene Nanocomposites (MMPS) and Investigation of Their Thermal and Mechanical Properties

Year 2021, Volume: Volume 1 Issue: Issue 2, 30 - 35, 30.12.2021

Abstract

TPolymer nanocomposites have significantly taken lots of attention over the last decade. The reason for this attention is thanks to the substantial improvements in thermal and mechanical properties of these composites which are obtained even with a small addition of clay, compared to conventional composites. This study aims to prepare nanocomposites of organo-clay and polystyrene bymelt intercalation method and to investigate their mechanical and thermal properties. Organo-clay was synthesized by solution intercalation method using aqueous dispersions of a long-chain hydrocarbon dispersed in aqueous medium by cetyltrimethylammonium bromide (CTAB) as a surfactant, with montmorillonite clay. The structural, thermal and mechanical characteristics of the nanocomposites were also investigated as a function of the content of the organo-clay. The organo-clay and the PCNs synthesized were characterized via XRD, HRTEM, FTIR and DSC techniques. The XRD patterns and HRTEM images show that in both cases, the organo-clay platelets have predominantly dispersed as tactoids (stacks of parallel clay platelets at about 100 nm separation) and also partially exfoliated into the polymer matrix. It was also found that the mechanical and thermal properties of the nanocomposites were significantly improved compared with pure polymer. The presence of the infrared bands of CTAB-montmorillonite in the PS/montmorillonite nanocomposite signifies that the clay tactoids were turned into fine particles and homogeneously dispersed in the PS matrix.DSC results also show that glass transition temperature and the thermal stability of the synthesized composites are higherthan those of the pure polymer and other composites.

References

  • 1. Fu, S.; Sun, Z.; Huang, P.; Li, Y.; Hu, N. Some basic aspects of polymer nanocomposites: A critical review. Nano Materials Science2019, 1, 2–30, doi:10.1016/j.nanoms.2019.02.006.
  • 2. Penaloza, D.P.J. Modified clay for the synthesis of clay-based nanocomposites. Epitoanyag-Journal of Silicate Based and Composite Materials2019, 71, 5–11, doi:10.14382/epitoanyag-jsbcm.2019.2.
  • 3. Sharp, K.G. Inorganic/Organic Hybrid Materials. Advanced Materials1998, 10, 1243–1248, doi:10.1002/(SICI)1521-4095(199810)10:15<1243::AID-ADMA1243>3.0.CO;2-6.
  • 4. Uthirakumar, P.; Song, M.-K.; Nah, C.; Lee, Y.-S. Preparation and characterization of exfoliated polystyrene/clay nanocomposites using a cationic radical initiator-MMT hybrid. European Polymer Journal2005, 41, 211–217, doi:10.1016/j.eurpolymj.2004.10.004.
  • 5. Xie, W.; Gao, Z.; Pan, W.-P.; Hunter, D.; Singh, A.; Vaia, R. Thermal Degradation Chemistry of Alkyl Quaternary Ammonium Montmorillonite. Chemistry of Materials2001, 13, 2979–2990, doi:10.1021/cm010305s.
  • 6. Xie, W.; Xie, R.; Pan, W.-P.; Hunter, D.; Koene, B.; Tan, L.-S.; Vaia, R. Thermal Stability of Quaternary Phosphonium Modified Montmorillonites. Chemistry of Materials2002, 14, 4837–4845, doi:10.1021/cm020705v.
  • 7. Vaia, R.A.; Giannelis, E.P. Polymer Melt Intercalation in Organically-Modified Layered Silicates: Model Predictions and Experiment. Macromolecules1997, 30, 8000–8009, doi:10.1021/ma9603488.
  • 8. Vaia, R.A.; Giannelis, E.P. Lattice Model of Polymer Melt Intercalation in Organically-Modified Layered Silicates. Macromolecules1997, 30, 7990–7999, doi:10.1021/ma9514333.
  • 9. Yalcinkaya, S.E.; Yildiz, N.; Sacak, M.; Calimli, A. Preparation of polystyrene/montmorillonite nanocomposites: optimization by response surface methodology (RSM). Turkish Journal of Chemistry2010, 34,581–592, doi:10.3906/kim-0908-235.
  • 10. Zhou, C.; Tong, D.; Yu, W. Smectite Nanomaterials: Preparation, Properties, and Functional Applications. In Nanomaterials from Clay Minerals; Elsevier, 2019; pp. 335–364.
  • 11. Alshabanat, M.; Al-Arrash, A.; Mekhamer, W. Polystyrene/Montmorillonite Nanocomposites: Study of the Morphology and Effects of Sonication Time on Thermal Stability. Journal of Nanomaterials2013, 2013, 1–12, doi:10.1155/2013/650725.
  • 12. Peña-Parás, L.; Sánchez-Fernández, J.A.; Vidaltamayo, R. Nanoclays for Biomedical Applications. In Handbook of Ecomaterials; Springer International Publishing: Cham, 2018; pp. 1–19.
  • 13. Uddin, F. Clays, Nanoclays, and Montmorillonite Minerals. Metallurgical and Materials Transactions A2008, 39, 2804–2814, doi:10.1007/s11661-008-9603-5.
  • 14. Zhong, Y.; Zhu, Z.; Wang, S.-Q. Synthesis and rheological properties of polystyrene/layered silicate nanocomposite. Polymer2005, 46, 3006–3013, doi:10.1016/j.polymer.2005.02.014.
  • 15. Cui, W.; Guo, F.; Chen, J. Preparation and properties of flame retardant high impact polystyrene. Fire Safety Journal2007, 42, 232–239, doi:10.1016/j.firesaf.2006.11.002.16. Ding, C.; Guo, B.; He, H.; Jia, D.; Hong, H. Preparation and structure of highly confined intercalated polystyrene/montmorillonite nanocomposite via a two-step method. European Polymer Journal2005, 41, 1781–1786, doi:10.1016/j.eurpolymj.2005.02.021.
  • 17. Essawy, H.A.; Badran, A.S.; Youssef, A.M.; Abd El-Hakim, A.E.-F.A. Polystyrene/Montmorillonite Nanocomposites Preparedby In Situ Intercalative Polymerization: Influence of the Surfactant Type. Macromolecular Chemistry and Physics2004, 205, 2366–2370, doi:10.1002/macp.200400227.
  • 18. Katančić, Z.; Travaš-Sejdić, J.; Hrnjak-Murgić, Z. Study of flammability and thermal properties of high-impact polystyrene nanocomposites. Polymer Degradation and Stability2011, 96, 2104–2111, doi:10.1016/j.polymdegradstab.2011.09.020.
  • 19. Mrah, L.; Meghabar,R. In situ polymerization of styrene–clay nanocomposites and their properties. Polymer Bulletin2021, 78, 3509–3526, doi:10.1007/s00289-020-03274-5.
  • 20. Xie, W.; Hwu, J.M.; Jiang, G.J.; Buthelezi, T.M.; Pan, W. A study of the effect of surfactants on theproperties of polystyrene-montmorillonite nanocomposites. Polymer Engineering & Science2003, 43, 214–222, doi:10.1002/pen.10018.
  • 21. Bourbigot, S.; Gilman, J.W.; Wilkie, C.A. Kinetic analysis of the thermal degradation of polystyrene–montmorillonite nanocomposite. Polymer Degradation and Stability2004, 84, 483–492, doi:10.1016/j.polymdegradstab.2004.01.006.
  • 22. Wang, D.; Wilkie, C.A. In-situ reactive blending to prepare polystyrene–clay and polypropylene–clay nanocomposites. Polymer Degradation and Stability2003, 80, 171–182, doi:10.1016/S0141-3910(02)00399-3.
  • 23. Zhao, S.; Qiu, S.; Zheng, Y.; Cheng, L.; Guo, Y. Synthesis and characterization of kaolin with polystyrene via in-situ polymerization and their application on polypropylene. Materials & Design2011, 32, 957–963, doi:10.1016/j.matdes.2010.07.020.
  • 24. Bhiwankar, N.N.; Weiss, R.A. Melt intercalation/exfoliation of polystyrene–sodium-montmorillonite nanocomposites using sulfonated polystyrene ionomer compatibilizers. Polymer2006, 47, 6684–6691,doi:10.1016/j.polymer.2006.07.017.
  • 25. Wang, M.K.; Wang, S.L.; Wang, W.M. Rapid Estimation of Cation-Exchange Capacities of Soils and Clays with Methylene Blue Exchange. Soil Science Society of America Journal1996, 60, 138–141, doi:10.2136/sssaj1996.03615995006000010022x.
  • 26. Bergaya, F.; Theng, B.K.G.; Lagaly, G. Handbook of Clay Science; Elsevier Ltd, 2006; ISBN 9780080993645.
  • 27. Rosen, M.J.; Goldsmith, H.A. Systematic Analysis of Surface-Active Agents, 2nd Edition (Chemical Analysis, Vol. 12) 2nd Edition; 2nd ed.; Wiley-Interscience: New York, USA, 1972;
  • 28. Chen, G.; Liu, S.; Chen, S.; Qi, Z. FTIR Spectra, Thermal Properties, and Dispersibility of a Polystyrene/Montmorillonite Nanocomposite. Macromolecular Chemistry and Physics2001, 202, 1189–1193, doi:10.1002/1521-3935(20010401)202:7<1189::AID-MACP1189>3.0.CO;2-M.
  • 29. Suresh, K.; Kumar, R.V.; Kumar, M.; Jeyapriya, M.; Anbarasan, R.; Pugazhenthi, G. Sonication-assisted synthesis of polystyrene (PS)/organoclay nanocomposites: influence of clay content. Applied Nanoscience2017, 7, 215–223, doi:10.1007/s13204-017-0562-2.
  • 30. Corcione, C.; Frigione, M. Characterization of Nanocomposites by Thermal Analysis. Materials2012, 5, 2960–2980, doi:10.3390/ma5122960.
  • 31. Khezri, K.; Haddadi-Asl, V.; Roghani-Mamaqani, H.; Salami-Kalajahi, M. Polystyrene–organoclay nanocomposites produced by in situ activators regenerated by electron transfer for atom transfer radical polymerization. Journal of Polymer Engineering2012, 32, 235–243, doi:10.1515/polyeng-2012-0029.
  • 32. Carastan, D.J.; Demarquette, N.R. Polystyrene/clay nanocomposites. International Materials Reviews2007, 52, 345–380, doi:10.1179/174328007X212517.
  • 33. Lee, Y.H.; Zheng, W.G.; Park, C.B.; Kontopoulou, M. Effects of Clay Dispersion on the Mechanical Properties and Flammability of Polyethylene/Clay Nanocomposites. SPE ANTEC Tech. Papers2005, 63, 1428–1432.
  • 34. López-Quintanilla, M.L.; Sánchez-Valdés, S.; Ramos de Valle, L.F.; Guedea Miranda, R. Preparation and mechanical properties of PP/PP-g-MA/Org-MMT nanocomposites with different MA content. Polymer Bulletin2006, 57, 385–393, doi:10.1007/s00289-006-0555-x
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Ahmet Gurses This is me

Kübra Gunes This is me

Publication Date December 30, 2021
Submission Date December 3, 2021
Published in Issue Year 2021 Volume: Volume 1 Issue: Issue 2

Cite